Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsltsolem1 Unicode version

Theorem axsltsolem1 23655
Description: Lemma for axsltso 23656. The sign expansion relationship totally orders the surreal signs. (Contributed by axsltsolem1, 8-Jun-2011.)
Assertion
Ref Expression
axsltsolem1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )

Proof of Theorem axsltsolem1
StepHypRef Expression
1 1n0 6427 . . . . . . . 8  |-  1o  =/=  (/)
2 df-ne 2421 . . . . . . . 8  |-  ( 1o  =/=  (/)  <->  -.  1o  =  (/) )
31, 2mpbi 201 . . . . . . 7  |-  -.  1o  =  (/)
4 eqtr2 2274 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  (/) )  ->  1o  =  (/) )
53, 4mto 169 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  (/) )
6 1on 6419 . . . . . . . . 9  |-  1o  e.  On
7 0elon 4382 . . . . . . . . 9  |-  (/)  e.  On
8 df-2o 6413 . . . . . . . . . . 11  |-  2o  =  suc  1o
9 df-1o 6412 . . . . . . . . . . 11  |-  1o  =  suc  (/)
108, 9eqeq12i 2269 . . . . . . . . . 10  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
11 suc11 4433 . . . . . . . . . 10  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
1210, 11syl5bb 250 . . . . . . . . 9  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( 2o  =  1o  <->  1o  =  (/) ) )
136, 7, 12mp2an 656 . . . . . . . 8  |-  ( 2o  =  1o  <->  1o  =  (/) )
141, 13nemtbir 2507 . . . . . . 7  |-  -.  2o  =  1o
15 eqtr2 2274 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  1o )  ->  2o  =  1o )
1615ancoms 441 . . . . . . 7  |-  ( ( x  =  1o  /\  x  =  2o )  ->  2o  =  1o )
1714, 16mto 169 . . . . . 6  |-  -.  (
x  =  1o  /\  x  =  2o )
18 nsuceq0 4409 . . . . . . . 8  |-  suc  1o  =/=  (/)
198eqeq1i 2263 . . . . . . . 8  |-  ( 2o  =  (/)  <->  suc  1o  =  (/) )
2018, 19nemtbir 2507 . . . . . . 7  |-  -.  2o  =  (/)
21 eqtr2 2274 . . . . . . . 8  |-  ( ( x  =  2o  /\  x  =  (/) )  ->  2o  =  (/) )
2221ancoms 441 . . . . . . 7  |-  ( ( x  =  (/)  /\  x  =  2o )  ->  2o  =  (/) )
2320, 22mto 169 . . . . . 6  |-  -.  (
x  =  (/)  /\  x  =  2o )
245, 17, 233pm3.2ni 23401 . . . . 5  |-  -.  (
( x  =  1o 
/\  x  =  (/) )  \/  ( x  =  1o  /\  x  =  2o )  \/  (
x  =  (/)  /\  x  =  2o ) )
25 vex 2743 . . . . . 6  |-  x  e. 
_V
2625, 25brtp 23442 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( x  =  1o  /\  x  =  (/) )  \/  (
x  =  1o  /\  x  =  2o )  \/  ( x  =  (/)  /\  x  =  2o ) ) )
2724, 26mtbir 292 . . . 4  |-  -.  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x
2827a1i 12 . . 3  |-  ( x  e.  { 1o ,  2o ,  (/) }  ->  -.  x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )
29 vex 2743 . . . . . . 7  |-  y  e. 
_V
3025, 29brtp 23442 . . . . . 6  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  <->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
31 vex 2743 . . . . . . 7  |-  z  e. 
_V
3229, 31brtp 23442 . . . . . 6  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )
33 eqtr2 2274 . . . . . . . . . . . . 13  |-  ( ( y  =  1o  /\  y  =  (/) )  ->  1o  =  (/) )
343, 33mto 169 . . . . . . . . . . . 12  |-  -.  (
y  =  1o  /\  y  =  (/) )
3534pm2.21i 125 . . . . . . . . . . 11  |-  ( ( y  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3635ad2ant2rl 732 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  (/) )  /\  ( x  =  1o  /\  y  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
3736expcom 426 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
3835ad2ant2rl 732 . . . . . . . . . 10  |-  ( ( ( y  =  1o 
/\  z  =  2o )  /\  ( x  =  1o  /\  y  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
3938expcom 426 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
40 3mix2 1130 . . . . . . . . . . 11  |-  ( ( x  =  1o  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4140ad2ant2rl 732 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
4241ex 425 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4337, 39, 423jaod 1251 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
44 eqtr2 2274 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  1o )  ->  2o  =  1o )
4514, 44mto 169 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  1o )
4645pm2.21i 125 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  1o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4746ad2ant2lr 731 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
4847ex 425 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
4946ad2ant2lr 731 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5049ex 425 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  1o  /\  z  =  2o )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) ) )
51 eqtr2 2274 . . . . . . . . . . . . 13  |-  ( ( y  =  2o  /\  y  =  (/) )  ->  2o  =  (/) )
5220, 51mto 169 . . . . . . . . . . . 12  |-  -.  (
y  =  2o  /\  y  =  (/) )
5352pm2.21i 125 . . . . . . . . . . 11  |-  ( ( y  =  2o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5453ad2ant2lr 731 . . . . . . . . . 10  |-  ( ( ( x  =  1o 
/\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
5554ex 425 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( y  =  (/)  /\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5648, 50, 553jaod 1251 . . . . . . . 8  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5746ad2ant2lr 731 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  (/) ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
5857ex 425 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  (/) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
5946ad2ant2lr 731 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  1o  /\  z  =  2o ) )  -> 
( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6059ex 425 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  1o 
/\  z  =  2o )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6153ad2ant2lr 731 . . . . . . . . . 10  |-  ( ( ( x  =  (/)  /\  y  =  2o )  /\  ( y  =  (/)  /\  z  =  2o ) )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6261ex 425 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( y  =  (/)  /\  z  =  2o )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6358, 60, 623jaod 1251 . . . . . . . 8  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6443, 56, 633jaoi 1250 . . . . . . 7  |-  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  -> 
( ( ( y  =  1o  /\  z  =  (/) )  \/  (
y  =  1o  /\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) )  ->  ( (
x  =  1o  /\  z  =  (/) )  \/  ( x  =  1o 
/\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) ) )
6564imp 420 . . . . . 6  |-  ( ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  /\  ( ( y  =  1o  /\  z  =  (/) )  \/  ( y  =  1o 
/\  z  =  2o )  \/  ( y  =  (/)  /\  z  =  2o ) ) )  ->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6630, 32, 65syl2anb 467 . . . . 5  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  (
( x  =  1o 
/\  z  =  (/) )  \/  ( x  =  1o  /\  z  =  2o )  \/  (
x  =  (/)  /\  z  =  2o ) ) )
6725, 31brtp 23442 . . . . 5  |-  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z  <->  ( ( x  =  1o  /\  z  =  (/) )  \/  (
x  =  1o  /\  z  =  2o )  \/  ( x  =  (/)  /\  z  =  2o ) ) )
6866, 67sylibr 205 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } z )
6968a1i 12 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) }  /\  z  e.  { 1o ,  2o ,  (/) } )  ->  ( ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  /\  y {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z )  ->  x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } z ) )
7025eltp 3619 . . . . 5  |-  ( x  e.  { 1o ,  2o ,  (/) }  <->  ( x  =  1o  \/  x  =  2o  \/  x  =  (/) ) )
7129eltp 3619 . . . . 5  |-  ( y  e.  { 1o ,  2o ,  (/) }  <->  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )
72 eqtr3 2275 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  1o )  ->  x  =  y )
73723mix2d 23405 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  1o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7473ex 425 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
75 3mix2 1130 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
76753mix1d 23404 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
7776ex 425 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
78 3mix1 1129 . . . . . . . . . 10  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) ) )
79783mix1d 23404 . . . . . . . . 9  |-  ( ( x  =  1o  /\  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8079ex 425 . . . . . . . 8  |-  ( x  =  1o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
8174, 77, 803jaod 1251 . . . . . . 7  |-  ( x  =  1o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
82 3mix2 1130 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
83823mix3d 23406 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8483expcom 426 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  1o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
85 eqtr3 2275 . . . . . . . . . 10  |-  ( ( x  =  2o  /\  y  =  2o )  ->  x  =  y )
86853mix2d 23405 . . . . . . . . 9  |-  ( ( x  =  2o  /\  y  =  2o )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
8786ex 425 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  2o  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
88 3mix3 1131 . . . . . . . . . 10  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( y  =  1o 
/\  x  =  (/) )  \/  ( y  =  1o  /\  x  =  2o )  \/  (
y  =  (/)  /\  x  =  2o ) ) )
89883mix3d 23406 . . . . . . . . 9  |-  ( ( y  =  (/)  /\  x  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9089expcom 426 . . . . . . . 8  |-  ( x  =  2o  ->  (
y  =  (/)  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
9184, 87, 903jaod 1251 . . . . . . 7  |-  ( x  =  2o  ->  (
( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
92 3mix1 1129 . . . . . . . . . 10  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
93923mix3d 23406 . . . . . . . . 9  |-  ( ( y  =  1o  /\  x  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9493expcom 426 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  1o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
95 3mix3 1131 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) ) )
96953mix1d 23404 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  2o )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
9796ex 425 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  2o  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
98 eqtr3 2275 . . . . . . . . . 10  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  x  =  y )
99983mix2d 23405 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10099ex 425 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y  =  (/)  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10194, 97, 1003jaod 1251 . . . . . . 7  |-  ( x  =  (/)  ->  ( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  -> 
( ( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
10281, 91, 1013jaoi 1250 . . . . . 6  |-  ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  -> 
( ( y  =  1o  \/  y  =  2o  \/  y  =  (/) )  ->  ( ( ( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) ) )
103102imp 420 . . . . 5  |-  ( ( ( x  =  1o  \/  x  =  2o  \/  x  =  (/) )  /\  ( y  =  1o  \/  y  =  2o  \/  y  =  (/) ) )  ->  (
( ( x  =  1o  /\  y  =  (/) )  \/  (
x  =  1o  /\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  ( y  =  1o 
/\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
10470, 71, 103syl2anb 467 . . . 4  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( ( ( x  =  1o  /\  y  =  (/) )  \/  ( x  =  1o 
/\  y  =  2o )  \/  ( x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
105 biid 229 . . . . 5  |-  ( x  =  y  <->  x  =  y )
10629, 25brtp 23442 . . . . 5  |-  ( y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x  <->  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) )
10730, 105, 1063orbi123i 1146 . . . 4  |-  ( ( x { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x )  <->  ( (
( x  =  1o 
/\  y  =  (/) )  \/  ( x  =  1o  /\  y  =  2o )  \/  (
x  =  (/)  /\  y  =  2o ) )  \/  x  =  y  \/  ( ( y  =  1o  /\  x  =  (/) )  \/  (
y  =  1o  /\  x  =  2o )  \/  ( y  =  (/)  /\  x  =  2o ) ) ) )
108104, 107sylibr 205 . . 3  |-  ( ( x  e.  { 1o ,  2o ,  (/) }  /\  y  e.  { 1o ,  2o ,  (/) } )  ->  ( x { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } y  \/  x  =  y  \/  y { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } x ) )
10928, 69, 108issoi 4282 . 2  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }
110 df-tp 3589 . . 3  |-  { 1o ,  2o ,  (/) }  =  ( { 1o ,  2o }  u.  { (/) } )
111 soeq2 4271 . . 3  |-  ( { 1o ,  2o ,  (/)
}  =  ( { 1o ,  2o }  u.  { (/) } )  -> 
( { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  { 1o ,  2o ,  (/) }  <->  { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } ) ) )
112110, 111ax-mp 10 . 2  |-  ( {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  Or  { 1o ,  2o ,  (/)
}  <->  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/)
} ) )
113109, 112mpbi 201 1  |-  { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  Or  ( { 1o ,  2o }  u.  { (/) } )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 938    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419    u. cun 3092   (/)c0 3397   {csn 3581   {cpr 3582   {ctp 3583   <.cop 3584   class class class wbr 3963    Or wor 4250   Oncon0 4329   suc csuc 4331   1oc1o 6405   2oc2o 6406
This theorem is referenced by:  axsltso  23656
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-suc 4335  df-1o 6412  df-2o 6413
  Copyright terms: Public domain W3C validator