Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5amN Unicode version

Theorem baerlem5amN 31057
Description: An equality that holds when  X,  Y,  Z are independent (non-colinear) vectors. Subtraction version of first equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 31059 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v  |-  V  =  ( Base `  W
)
baerlem3.m  |-  .-  =  ( -g `  W )
baerlem3.o  |-  .0.  =  ( 0g `  W )
baerlem3.s  |-  .(+)  =  (
LSSum `  W )
baerlem3.n  |-  N  =  ( LSpan `  W )
baerlem3.w  |-  ( ph  ->  W  e.  LVec )
baerlem3.x  |-  ( ph  ->  X  e.  V )
baerlem3.c  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
baerlem3.d  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
baerlem3.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
baerlem3.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
baerlem5a.p  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
baerlem5amN  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .-  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.+  Z ) } )  .(+)  ( N `  { Y } ) ) ) )

Proof of Theorem baerlem5amN
StepHypRef Expression
1 baerlem3.y . . . . . . 7  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
2 eldifi 3259 . . . . . . 7  |-  ( Y  e.  ( V  \  {  .0.  } )  ->  Y  e.  V )
31, 2syl 17 . . . . . 6  |-  ( ph  ->  Y  e.  V )
4 baerlem3.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
5 eldifi 3259 . . . . . . 7  |-  ( Z  e.  ( V  \  {  .0.  } )  ->  Z  e.  V )
64, 5syl 17 . . . . . 6  |-  ( ph  ->  Z  e.  V )
7 baerlem3.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 baerlem5a.p . . . . . . 7  |-  .+  =  ( +g  `  W )
9 eqid 2256 . . . . . . 7  |-  ( inv g `  W )  =  ( inv g `  W )
10 baerlem3.m . . . . . . 7  |-  .-  =  ( -g `  W )
117, 8, 9, 10grpsubval 14473 . . . . . 6  |-  ( ( Y  e.  V  /\  Z  e.  V )  ->  ( Y  .-  Z
)  =  ( Y 
.+  ( ( inv g `  W ) `
 Z ) ) )
123, 6, 11syl2anc 645 . . . . 5  |-  ( ph  ->  ( Y  .-  Z
)  =  ( Y 
.+  ( ( inv g `  W ) `
 Z ) ) )
1312oveq2d 5794 . . . 4  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .-  ( Y  .+  ( ( inv g `  W
) `  Z )
) ) )
1413sneqd 3613 . . 3  |-  ( ph  ->  { ( X  .-  ( Y  .-  Z ) ) }  =  {
( X  .-  ( Y  .+  ( ( inv g `  W ) `
 Z ) ) ) } )
1514fveq2d 5448 . 2  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .-  Z ) ) } )  =  ( N `  { ( X  .-  ( Y 
.+  ( ( inv g `  W ) `
 Z ) ) ) } ) )
16 baerlem3.o . . 3  |-  .0.  =  ( 0g `  W )
17 baerlem3.s . . 3  |-  .(+)  =  (
LSSum `  W )
18 baerlem3.n . . 3  |-  N  =  ( LSpan `  W )
19 baerlem3.w . . 3  |-  ( ph  ->  W  e.  LVec )
20 baerlem3.x . . 3  |-  ( ph  ->  X  e.  V )
21 lveclmod 15807 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
2219, 21syl 17 . . . . 5  |-  ( ph  ->  W  e.  LMod )
237, 9lmodvnegcl 15613 . . . . 5  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  (
( inv g `  W ) `  Z
)  e.  V )
2422, 6, 23syl2anc 645 . . . 4  |-  ( ph  ->  ( ( inv g `  W ) `  Z
)  e.  V )
25 eqid 2256 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
267, 25, 18, 22, 3, 6lspprcl 15683 . . . . . 6  |-  ( ph  ->  ( N `  { Y ,  Z }
)  e.  ( LSubSp `  W ) )
27 baerlem3.c . . . . . 6  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
287, 16, 25, 22, 26, 20, 27lssneln0 15657 . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
297, 18, 19, 20, 3, 6, 27lspindpi 15833 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
3029simpld 447 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
317, 16, 18, 19, 28, 3, 30lspsnne1 15818 . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y } ) )
32 baerlem3.d . . . . . . . 8  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
3332necomd 2502 . . . . . . 7  |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { Y } ) )
347, 16, 18, 19, 4, 3, 33lspsnne1 15818 . . . . . 6  |-  ( ph  ->  -.  Z  e.  ( N `  { Y } ) )
357, 18, 19, 20, 6, 3, 34, 27lspexchn2 15832 . . . . 5  |-  ( ph  ->  -.  Z  e.  ( N `  { Y ,  X } ) )
36 lmodgrp 15582 . . . . . . . . 9  |-  ( W  e.  LMod  ->  W  e. 
Grp )
3719, 21, 363syl 20 . . . . . . . 8  |-  ( ph  ->  W  e.  Grp )
3837adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  W  e.  Grp )
396adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  Z  e.  V )
407, 9grpinvinv 14483 . . . . . . 7  |-  ( ( W  e.  Grp  /\  Z  e.  V )  ->  ( ( inv g `  W ) `  (
( inv g `  W ) `  Z
) )  =  Z )
4138, 39, 40syl2anc 645 . . . . . 6  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  (
( inv g `  W ) `  (
( inv g `  W ) `  Z
) )  =  Z )
4222adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  W  e.  LMod )
437, 25, 18, 22, 3, 20lspprcl 15683 . . . . . . . 8  |-  ( ph  ->  ( N `  { Y ,  X }
)  e.  ( LSubSp `  W ) )
4443adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  ( N `  { Y ,  X } )  e.  ( LSubSp `  W )
)
45 simpr 449 . . . . . . 7  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  (
( inv g `  W ) `  Z
)  e.  ( N `
 { Y ,  X } ) )
4625, 9lssvnegcl 15661 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( N `  { Y ,  X } )  e.  ( LSubSp `  W )  /\  ( ( inv g `  W ) `  Z
)  e.  ( N `
 { Y ,  X } ) )  -> 
( ( inv g `  W ) `  (
( inv g `  W ) `  Z
) )  e.  ( N `  { Y ,  X } ) )
4742, 44, 45, 46syl3anc 1187 . . . . . 6  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  (
( inv g `  W ) `  (
( inv g `  W ) `  Z
) )  e.  ( N `  { Y ,  X } ) )
4841, 47eqeltrrd 2331 . . . . 5  |-  ( (
ph  /\  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )  ->  Z  e.  ( N `  { Y ,  X }
) )
4935, 48mtand 643 . . . 4  |-  ( ph  ->  -.  ( ( inv g `  W ) `
 Z )  e.  ( N `  { Y ,  X }
) )
507, 18, 19, 24, 20, 3, 31, 49lspexchn2 15832 . . 3  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  ( ( inv g `  W ) `
 Z ) } ) )
517, 9, 18lspsnneg 15711 . . . . 5  |-  ( ( W  e.  LMod  /\  Z  e.  V )  ->  ( N `  { (
( inv g `  W ) `  Z
) } )  =  ( N `  { Z } ) )
5222, 6, 51syl2anc 645 . . . 4  |-  ( ph  ->  ( N `  {
( ( inv g `  W ) `  Z
) } )  =  ( N `  { Z } ) )
5332, 52neeqtrrd 2443 . . 3  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { (
( inv g `  W ) `  Z
) } ) )
547, 16, 9grpinvnzcl 14488 . . . 4  |-  ( ( W  e.  Grp  /\  Z  e.  ( V  \  {  .0.  } ) )  ->  ( ( inv g `  W ) `
 Z )  e.  ( V  \  {  .0.  } ) )
5537, 4, 54syl2anc 645 . . 3  |-  ( ph  ->  ( ( inv g `  W ) `  Z
)  e.  ( V 
\  {  .0.  }
) )
567, 10, 16, 17, 18, 19, 20, 50, 53, 1, 55, 8baerlem5a 31055 . 2  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  ( ( inv g `  W ) `
 Z ) ) ) } )  =  ( ( ( N `
 { ( X 
.-  Y ) } )  .(+)  ( N `  { ( ( inv g `  W ) `
 Z ) } ) )  i^i  (
( N `  {
( X  .-  (
( inv g `  W ) `  Z
) ) } ) 
.(+)  ( N `  { Y } ) ) ) )
5752oveq2d 5794 . . 3  |-  ( ph  ->  ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { ( ( inv g `  W ) `
 Z ) } ) )  =  ( ( N `  {
( X  .-  Y
) } )  .(+)  ( N `  { Z } ) ) )
587, 8, 10, 9, 37, 20, 6grpsubinv 14489 . . . . . 6  |-  ( ph  ->  ( X  .-  (
( inv g `  W ) `  Z
) )  =  ( X  .+  Z ) )
5958sneqd 3613 . . . . 5  |-  ( ph  ->  { ( X  .-  ( ( inv g `  W ) `  Z
) ) }  =  { ( X  .+  Z ) } )
6059fveq2d 5448 . . . 4  |-  ( ph  ->  ( N `  {
( X  .-  (
( inv g `  W ) `  Z
) ) } )  =  ( N `  { ( X  .+  Z ) } ) )
6160oveq1d 5793 . . 3  |-  ( ph  ->  ( ( N `  { ( X  .-  ( ( inv g `  W ) `  Z
) ) } ) 
.(+)  ( N `  { Y } ) )  =  ( ( N `
 { ( X 
.+  Z ) } )  .(+)  ( N `  { Y } ) ) )
6257, 61ineq12d 3332 . 2  |-  ( ph  ->  ( ( ( N `
 { ( X 
.-  Y ) } )  .(+)  ( N `  { ( ( inv g `  W ) `
 Z ) } ) )  i^i  (
( N `  {
( X  .-  (
( inv g `  W ) `  Z
) ) } ) 
.(+)  ( N `  { Y } ) ) )  =  ( ( ( N `  {
( X  .-  Y
) } )  .(+)  ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .+  Z ) } ) 
.(+)  ( N `  { Y } ) ) ) )
6315, 56, 623eqtrd 2292 1  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .-  Z ) ) } )  =  ( ( ( N `  { ( X  .-  Y ) } ) 
.(+)  ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.+  Z ) } )  .(+)  ( N `  { Y } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419    \ cdif 3110    i^i cin 3112   {csn 3600   {cpr 3601   ` cfv 4659  (class class class)co 5778   Basecbs 13096   +g cplusg 13156   0gc0g 13348   Grpcgrp 14310   inv gcminusg 14311   -gcsg 14313   LSSumclsm 14893   LModclmod 15575   LSubSpclss 15637   LSpanclspn 15676   LVecclvec 15803
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-tpos 6154  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-n 9701  df-2 9758  df-3 9759  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-0g 13352  df-mnd 14315  df-submnd 14364  df-grp 14437  df-minusg 14438  df-sbg 14439  df-subg 14566  df-cntz 14741  df-lsm 14895  df-cmn 15039  df-abl 15040  df-mgp 15274  df-ring 15288  df-ur 15290  df-oppr 15353  df-dvdsr 15371  df-unit 15372  df-invr 15402  df-drng 15462  df-lmod 15577  df-lss 15638  df-lsp 15677  df-lvec 15804
  Copyright terms: Public domain W3C validator