Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrcn0 Structured version   Unicode version

Theorem ballotlemfrcn0 24789
Description: Value of  F for a reversed counting  ( R `  C ), before the first tie, cannot be zero . (Contributed by Thierry Arnoux, 25-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
Assertion
Ref Expression
ballotlemfrcn0  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( F `  ( R `  C ) ) `  J )  =/=  0 )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c    R, i   
i, J
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    R( x, k, c)    S( x)    E( x)    F( x)    I( x)    J( x, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemfrcn0
Dummy variables  v  u  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 10313 . . . . . 6  |-  1  e.  ZZ
21a1i 11 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  e.  ZZ )
3 ballotth.m . . . . . . . 8  |-  M  e.  NN
4 ballotth.n . . . . . . . 8  |-  N  e.  NN
5 nnaddcl 10024 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
63, 4, 5mp2an 655 . . . . . . 7  |-  ( M  +  N )  e.  NN
76nnzi 10307 . . . . . 6  |-  ( M  +  N )  e.  ZZ
87a1i 11 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( M  +  N
)  e.  ZZ )
9 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
10 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
11 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
12 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
13 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
14 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|->  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  c
) `  k )  =  0 } ,  RR ,  `'  <  ) )
15 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
163, 4, 9, 10, 11, 12, 13, 14, 15ballotlemsdom 24771 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( M  +  N ) ) )
17 elfzelz 11061 . . . . . . . 8  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... ( M  +  N )
)  ->  ( ( S `  C ) `  J )  e.  ZZ )
1816, 17syl 16 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  e.  ZZ )
19183adant3 978 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  e.  ZZ )
2019, 2zsubcld 10382 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ZZ )
213, 4, 9, 10, 11, 12, 13, 14, 15ballotlemsgt1 24770 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <  ( ( S `  C ) `  J ) )
22 zltlem1 10330 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( ( S `  C ) `  J
)  e.  ZZ )  ->  ( 1  < 
( ( S `  C ) `  J
)  <->  1  <_  (
( ( S `  C ) `  J
)  -  1 ) ) )
2322biimpa 472 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  ( ( S `  C ) `  J
)  e.  ZZ )  /\  1  <  (
( S `  C
) `  J )
)  ->  1  <_  ( ( ( S `  C ) `  J
)  -  1 ) )
242, 19, 21, 23syl21anc 1184 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <_  ( (
( S `  C
) `  J )  -  1 ) )
2519zred 10377 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  e.  RR )
26 1re 9092 . . . . . . . 8  |-  1  e.  RR
2726a1i 11 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  e.  RR )
2825, 27resubcld 9467 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  RR )
29 simp1 958 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  C  e.  ( O  \  E ) )
303, 4, 9, 10, 11, 12, 13, 14ballotlemiex 24761 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
3130simpld 447 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
32 elfzelz 11061 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
3329, 31, 323syl 19 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  ZZ )
3433zred 10377 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  e.  RR )
358zred 10377 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( M  +  N
)  e.  RR )
36 elfzelz 11061 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  J  e.  ZZ )
37363ad2ant2 980 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  ZZ )
38 elfzle1 11062 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( M  +  N
) )  ->  1  <_  J )
39383ad2ant2 980 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
1  <_  J )
4037zred 10377 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  RR )
41 simp3 960 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <  ( I `  C ) )
4240, 34, 41ltled 9223 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  <_  ( I `  C ) )
43 elfz4 11054 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( I `  C
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( I `
 C ) ) )  ->  J  e.  ( 1 ... (
I `  C )
) )
442, 33, 37, 39, 42, 43syl32anc 1193 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  J  e.  ( 1 ... ( I `  C ) ) )
453, 4, 9, 10, 11, 12, 13, 14, 15ballotlemsel1i 24772 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  e.  ( 1 ... ( I `
 C ) ) )
4629, 44, 45syl2anc 644 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  e.  ( 1 ... ( I `  C ) ) )
47 elfzle2 11063 . . . . . . . . 9  |-  ( ( ( S `  C
) `  J )  e.  ( 1 ... (
I `  C )
)  ->  ( ( S `  C ) `  J )  <_  (
I `  C )
)
4846, 47syl 16 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( S `  C ) `  J
)  <_  ( I `  C ) )
49 zlem1lt 10329 . . . . . . . . 9  |-  ( ( ( ( S `  C ) `  J
)  e.  ZZ  /\  ( I `  C
)  e.  ZZ )  ->  ( ( ( S `  C ) `
 J )  <_ 
( I `  C
)  <->  ( ( ( S `  C ) `
 J )  - 
1 )  <  (
I `  C )
) )
5019, 33, 49syl2anc 644 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  <_  (
I `  C )  <->  ( ( ( S `  C ) `  J
)  -  1 )  <  ( I `  C ) ) )
5148, 50mpbid 203 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  <  ( I `
 C ) )
5228, 34, 51ltled 9223 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  <_  ( I `  C ) )
53 elfzle2 11063 . . . . . . 7  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
5429, 31, 533syl 19 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
)  <_  ( M  +  N ) )
5528, 34, 35, 52, 54letrd 9229 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  <_  ( M  +  N ) )
56 elfz4 11054 . . . . 5  |-  ( ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  ( ( ( S `
 C ) `  J )  -  1 )  e.  ZZ )  /\  ( 1  <_ 
( ( ( S `
 C ) `  J )  -  1 )  /\  ( ( ( S `  C
) `  J )  -  1 )  <_ 
( M  +  N
) ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ( 1 ... ( M  +  N ) ) )
572, 8, 20, 24, 55, 56syl32anc 1193 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( S `
 C ) `  J )  -  1 )  e.  ( 1 ... ( M  +  N ) ) )
58 fvex 5744 . . . . . . . . . 10  |-  ( I `
 C )  e. 
_V
59 ovex 6108 . . . . . . . . . 10  |-  ( ( ( S `  C
) `  J )  -  1 )  e. 
_V
6058, 59brcnv 5057 . . . . . . . . 9  |-  ( ( I `  C ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 )  <->  ( (
( S `  C
) `  J )  -  1 )  < 
( I `  C
) )
6151, 60sylibr 205 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( I `  C
) `'  <  (
( ( S `  C ) `  J
)  -  1 ) )
623, 4, 9, 10, 11, 12, 13, 14ballotlemi 24760 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  =  sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) )
6362breq1d 4224 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
) `'  <  (
( ( S `  C ) `  J
)  -  1 )  <->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) ) )
64633ad2ant1 979 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( I `  C ) `'  <  ( ( ( S `  C ) `  J
)  -  1 )  <->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) ) )
6561, 64mpbid 203 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) )
66 ltso 9158 . . . . . . . . . . 11  |-  <  Or  RR
67 cnvso 5413 . . . . . . . . . . 11  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
6866, 67mpbi 201 . . . . . . . . . 10  |-  `'  <  Or  RR
6968a1i 11 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  `'  <  Or  RR )
703, 4, 9, 10, 11, 12, 13, 14ballotlemsup 24764 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  E. z  e.  RR  ( A. w  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 C ) `  k )  =  0 }  -.  z `'  <  w  /\  A. w  e.  RR  (
w `'  <  z  ->  E. y  e.  {
k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  C ) `  k
)  =  0 } w `'  <  y
) ) )
7169, 70supub 7466 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( ( ( S `
 C ) `  J )  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 }  ->  -. 
sup ( { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 ) ) )
7271con2d 110 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( sup ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 } ,  RR ,  `'  <  ) `'  <  ( ( ( S `  C ) `
 J )  - 
1 )  ->  -.  ( ( ( S `
 C ) `  J )  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } ) )
7329, 65, 72sylc 59 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  -.  ( ( ( S `
 C ) `  J )  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  C
) `  k )  =  0 } )
74 fveq2 5730 . . . . . . . 8  |-  ( k  =  ( ( ( S `  C ) `
 J )  - 
1 )  ->  (
( F `  C
) `  k )  =  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) ) )
7574eqeq1d 2446 . . . . . . 7  |-  ( k  =  ( ( ( S `  C ) `
 J )  - 
1 )  ->  (
( ( F `  C ) `  k
)  =  0  <->  (
( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =  0 ) )
7675elrab 3094 . . . . . 6  |-  ( ( ( ( S `  C ) `  J
)  -  1 )  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  C ) `
 k )  =  0 }  <->  ( (
( ( S `  C ) `  J
)  -  1 )  e.  ( 1 ... ( M  +  N
) )  /\  (
( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =  0 ) )
7773, 76sylnib 297 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  -.  ( ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
78 imnan 413 . . . . 5  |-  ( ( ( ( ( S `
 C ) `  J )  -  1 )  e.  ( 1 ... ( M  +  N ) )  ->  -.  ( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  =  0 )  <->  -.  ( ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
7977, 78sylibr 205 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( ( S `  C ) `
 J )  - 
1 )  e.  ( 1 ... ( M  +  N ) )  ->  -.  ( ( F `  C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
8057, 79mpd 15 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  ->  -.  ( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  =  0 )
8180neneqad 2676 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( F `  C ) `  (
( ( S `  C ) `  J
)  -  1 ) )  =/=  0 )
82 ballotth.r . . . . . . . . . 10  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
833, 4, 9, 10, 11, 12, 13, 14, 15, 82ballotlemro 24782 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  O )
8483adantr 453 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( R `  C )  e.  O
)
85 elfzelz 11061 . . . . . . . . 9  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
8685adantl 454 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
873, 4, 9, 10, 11, 84, 86ballotlemfelz 24750 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  ZZ )
8887zcnd 10378 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  e.  CC )
8988negeq0d 9405 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  ( R `
 C ) ) `
 J )  =  0  <->  -u ( ( F `
 ( R `  C ) ) `  J )  =  0 ) )
90 eqid 2438 . . . . . . 7  |-  ( u  e.  Fin ,  v  e.  Fin  |->  ( (
# `  ( v  i^i  u ) )  -  ( # `  ( v 
\  u ) ) ) )  =  ( u  e.  Fin , 
v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
913, 4, 9, 10, 11, 12, 13, 14, 15, 82, 90ballotlemfrceq 24788 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  -u ( ( F `  ( R `  C ) ) `  J ) )
9291eqeq1d 2446 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  C ) `
 ( ( ( S `  C ) `
 J )  - 
1 ) )  =  0  <->  -u ( ( F `
 ( R `  C ) ) `  J )  =  0 ) )
9389, 92bitr4d 249 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  ( R `
 C ) ) `
 J )  =  0  <->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =  0 ) )
9493necon3bid 2638 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( F `  ( R `
 C ) ) `
 J )  =/=  0  <->  ( ( F `
 C ) `  ( ( ( S `
 C ) `  J )  -  1 ) )  =/=  0
) )
9529, 44, 94syl2anc 644 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( ( F `
 ( R `  C ) ) `  J )  =/=  0  <->  ( ( F `  C
) `  ( (
( S `  C
) `  J )  -  1 ) )  =/=  0 ) )
9681, 95mpbird 225 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) )  /\  J  <  ( I `  C ) )  -> 
( ( F `  ( R `  C ) ) `  J )  =/=  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   {crab 2711    \ cdif 3319    i^i cin 3321   ifcif 3741   ~Pcpw 3801   class class class wbr 4214    e. cmpt 4268    Or wor 4504   `'ccnv 4879   "cima 4883   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   Fincfn 7111   supcsup 7447   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    < clt 9122    <_ cle 9123    - cmin 9293   -ucneg 9294    / cdiv 9679   NNcn 10002   ZZcz 10284   ...cfz 11045   #chash 11620
This theorem is referenced by:  ballotlemirc  24791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-hash 11621
  Copyright terms: Public domain W3C validator