Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemoex Unicode version

Theorem ballotlemoex 24731
Description:  O is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
Assertion
Ref Expression
ballotlemoex  |-  O  e. 
_V
Distinct variable groups:    M, c    N, c    O, c

Proof of Theorem ballotlemoex
StepHypRef Expression
1 ovex 6097 . . 3  |-  ( 1 ... ( M  +  N ) )  e. 
_V
21pwex 4374 . 2  |-  ~P (
1 ... ( M  +  N ) )  e. 
_V
3 ballotth.o . . 3  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ssrab2 3420 . . 3  |-  { c  e.  ~P ( 1 ... ( M  +  N ) )  |  ( # `  c
)  =  M }  C_ 
~P ( 1 ... ( M  +  N
) )
53, 4eqsstri 3370 . 2  |-  O  C_  ~P ( 1 ... ( M  +  N )
)
62, 5ssexi 4340 1  |-  O  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948   ~Pcpw 3791   ` cfv 5445  (class class class)co 6072   1c1 8980    + caddc 8982   NNcn 9989   ...cfz 11032   #chash 11606
This theorem is referenced by:  ballotlem2  24734  ballotlem8  24782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-pw 3793  df-sn 3812  df-pr 3813  df-uni 4008  df-iota 5409  df-fv 5453  df-ov 6075
  Copyright terms: Public domain W3C validator