MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Unicode version

Theorem basellem1 20281
Description: Lemma for basel 20290. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypothesis
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
Assertion
Ref Expression
basellem1  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 10786 . . . . . 6  |-  ( K  e.  ( 1 ... M )  ->  K  e.  NN )
21nnrpd 10357 . . . . 5  |-  ( K  e.  ( 1 ... M )  ->  K  e.  RR+ )
3 pire 19795 . . . . . 6  |-  pi  e.  RR
4 pipos 19796 . . . . . 6  |-  0  <  pi
53, 4elrpii 10325 . . . . 5  |-  pi  e.  RR+
6 rpmulcl 10343 . . . . 5  |-  ( ( K  e.  RR+  /\  pi  e.  RR+ )  ->  ( K  x.  pi )  e.  RR+ )
72, 5, 6sylancl 646 . . . 4  |-  ( K  e.  ( 1 ... M )  ->  ( K  x.  pi )  e.  RR+ )
8 basel.n . . . . . 6  |-  N  =  ( ( 2  x.  M )  +  1 )
9 2nn 9845 . . . . . . . 8  |-  2  e.  NN
10 nnmulcl 9737 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
119, 10mpan 654 . . . . . . 7  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
1211peano2nnd 9731 . . . . . 6  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
138, 12syl5eqel 2342 . . . . 5  |-  ( M  e.  NN  ->  N  e.  NN )
1413nnrpd 10357 . . . 4  |-  ( M  e.  NN  ->  N  e.  RR+ )
15 rpdivcl 10344 . . . 4  |-  ( ( ( K  x.  pi )  e.  RR+  /\  N  e.  RR+ )  ->  (
( K  x.  pi )  /  N )  e.  RR+ )
167, 14, 15syl2anr 466 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  RR+ )
1716rpred 10358 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  RR )
1816rpgt0d 10361 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  (
( K  x.  pi )  /  N ) )
191adantl 454 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  NN )
20 nnmulcl 9737 . . . . . . . 8  |-  ( ( K  e.  NN  /\  2  e.  NN )  ->  ( K  x.  2 )  e.  NN )
2119, 9, 20sylancl 646 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  e.  NN )
2221nnred 9729 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  e.  RR )
2311adantr 453 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  e.  NN )
2423nnred 9729 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  e.  RR )
2513adantr 453 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  N  e.  NN )
2625nnred 9729 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  N  e.  RR )
278, 26syl5eqelr 2343 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( 2  x.  M )  +  1 )  e.  RR )
2819nncnd 9730 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  CC )
29 2cn 9784 . . . . . . . 8  |-  2  e.  CC
30 mulcom 8791 . . . . . . . 8  |-  ( ( K  e.  CC  /\  2  e.  CC )  ->  ( K  x.  2 )  =  ( 2  x.  K ) )
3128, 29, 30sylancl 646 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  =  ( 2  x.  K ) )
32 elfzle2 10767 . . . . . . . . 9  |-  ( K  e.  ( 1 ... M )  ->  K  <_  M )
3332adantl 454 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  <_  M
)
3419nnred 9729 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  RR )
35 nnre 9721 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  RR )
3635adantr 453 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  M  e.  RR )
37 2re 9783 . . . . . . . . . . 11  |-  2  e.  RR
38 2pos 9796 . . . . . . . . . . 11  |-  0  <  2
3937, 38pm3.2i 443 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
4039a1i 12 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
41 lemul2 9577 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( K  <_  M 
<->  ( 2  x.  K
)  <_  ( 2  x.  M ) ) )
4234, 36, 40, 41syl3anc 1187 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  <_  M 
<->  ( 2  x.  K
)  <_  ( 2  x.  M ) ) )
4333, 42mpbid 203 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  K )  <_  (
2  x.  M ) )
4431, 43eqbrtrd 4017 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <_  (
2  x.  M ) )
4524ltp1d 9655 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  <  (
( 2  x.  M
)  +  1 ) )
4622, 24, 27, 44, 45lelttrd 8942 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <  (
( 2  x.  M
)  +  1 ) )
4746, 8syl6breqr 4037 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <  N
)
48 remulcl 8790 . . . . . 6  |-  ( ( K  e.  RR  /\  pi  e.  RR )  -> 
( K  x.  pi )  e.  RR )
4934, 3, 48sylancl 646 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  pi )  e.  RR )
5021nngt0d 9757 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  ( K  x.  2 ) )
5125nngt0d 9757 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  N
)
527adantl 454 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  pi )  e.  RR+ )
5352rpgt0d 10361 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  ( K  x.  pi )
)
54 ltdiv2OLD 9610 . . . . 5  |-  ( ( ( ( K  x.  2 )  e.  RR  /\  N  e.  RR  /\  ( K  x.  pi )  e.  RR )  /\  ( 0  <  ( K  x.  2 )  /\  0  <  N  /\  0  <  ( K  x.  pi ) ) )  ->  ( ( K  x.  2 )  <  N  <->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) ) )
5522, 26, 49, 50, 51, 53, 54syl33anc 1202 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  2 )  < 
N  <->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) ) )
5647, 55mpbid 203 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) )
573recni 8817 . . . . 5  |-  pi  e.  CC
5857a1i 12 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  pi  e.  CC )
59 2ne0 9797 . . . . . 6  |-  2  =/=  0
6029, 59pm3.2i 443 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
6160a1i 12 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
6219nnne0d 9758 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  =/=  0
)
63 divcan5 9430 . . . 4  |-  ( ( pi  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( K  x.  pi )  /  ( K  x.  2 ) )  =  ( pi 
/  2 ) )
6458, 61, 28, 62, 63syl112anc 1191 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  / 
( K  x.  2 ) )  =  ( pi  /  2 ) )
6556, 64breqtrd 4021 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) )
66 0xr 8846 . . 3  |-  0  e.  RR*
67 rehalfcl 9906 . . . 4  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
68 rexr 8845 . . . 4  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
693, 67, 68mp2b 11 . . 3  |-  ( pi 
/  2 )  e. 
RR*
70 elioo2 10664 . . 3  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( ( K  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( (
( K  x.  pi )  /  N )  e.  RR  /\  0  < 
( ( K  x.  pi )  /  N
)  /\  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) ) ) )
7166, 69, 70mp2an 656 . 2  |-  ( ( ( K  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  <->  ( ( ( K  x.  pi )  /  N )  e.  RR  /\  0  < 
( ( K  x.  pi )  /  N
)  /\  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) ) )
7217, 18, 65, 71syl3anbrc 1141 1  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710   RR*cxr 8834    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   2c2 9763   RR+crp 10322   (,)cioo 10623   ...cfz 10749   picpi 12311
This theorem is referenced by:  basellem4  20284  basellem8  20288
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9934  df-z 9993  df-dec 10093  df-uz 10199  df-q 10285  df-rp 10323  df-xneg 10420  df-xadd 10421  df-xmul 10422  df-ioo 10627  df-ioc 10628  df-ico 10629  df-icc 10630  df-fz 10750  df-fzo 10838  df-fl 10892  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312  df-sin 12314  df-cos 12315  df-pi 12317  df-struct 13113  df-ndx 13114  df-slot 13115  df-base 13116  df-sets 13117  df-ress 13118  df-plusg 13184  df-mulr 13185  df-starv 13186  df-sca 13187  df-vsca 13188  df-tset 13190  df-ple 13191  df-ds 13193  df-hom 13195  df-cco 13196  df-rest 13290  df-topn 13291  df-topgen 13307  df-pt 13308  df-prds 13311  df-xrs 13366  df-0g 13367  df-gsum 13368  df-qtop 13373  df-imas 13374  df-xps 13376  df-mre 13451  df-mrc 13452  df-acs 13454  df-mnd 14330  df-submnd 14379  df-mulg 14455  df-cntz 14756  df-cmn 15054  df-xmet 16336  df-met 16337  df-bl 16338  df-mopn 16339  df-cnfld 16341  df-top 16599  df-bases 16601  df-topon 16602  df-topsp 16603  df-cld 16719  df-ntr 16720  df-cls 16721  df-nei 16798  df-lp 16831  df-perf 16832  df-cn 16920  df-cnp 16921  df-haus 17006  df-tx 17220  df-hmeo 17409  df-fbas 17483  df-fg 17484  df-fil 17504  df-fm 17596  df-flim 17597  df-flf 17598  df-xms 17848  df-ms 17849  df-tms 17850  df-cncf 18345  df-limc 19179  df-dv 19180
  Copyright terms: Public domain W3C validator