MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Unicode version

Theorem basellem1 20245
Description: Lemma for basel 20254. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypothesis
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
Assertion
Ref Expression
basellem1  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 10750 . . . . . 6  |-  ( K  e.  ( 1 ... M )  ->  K  e.  NN )
21nnrpd 10321 . . . . 5  |-  ( K  e.  ( 1 ... M )  ->  K  e.  RR+ )
3 pire 19759 . . . . . 6  |-  pi  e.  RR
4 pipos 19760 . . . . . 6  |-  0  <  pi
53, 4elrpii 10289 . . . . 5  |-  pi  e.  RR+
6 rpmulcl 10307 . . . . 5  |-  ( ( K  e.  RR+  /\  pi  e.  RR+ )  ->  ( K  x.  pi )  e.  RR+ )
72, 5, 6sylancl 646 . . . 4  |-  ( K  e.  ( 1 ... M )  ->  ( K  x.  pi )  e.  RR+ )
8 basel.n . . . . . 6  |-  N  =  ( ( 2  x.  M )  +  1 )
9 2nn 9809 . . . . . . . 8  |-  2  e.  NN
10 nnmulcl 9702 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
119, 10mpan 654 . . . . . . 7  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
1211peano2nnd 9696 . . . . . 6  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
138, 12syl5eqel 2340 . . . . 5  |-  ( M  e.  NN  ->  N  e.  NN )
1413nnrpd 10321 . . . 4  |-  ( M  e.  NN  ->  N  e.  RR+ )
15 rpdivcl 10308 . . . 4  |-  ( ( ( K  x.  pi )  e.  RR+  /\  N  e.  RR+ )  ->  (
( K  x.  pi )  /  N )  e.  RR+ )
167, 14, 15syl2anr 466 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  RR+ )
1716rpred 10322 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  RR )
1816rpgt0d 10325 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  (
( K  x.  pi )  /  N ) )
191adantl 454 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  NN )
20 nnmulcl 9702 . . . . . . . 8  |-  ( ( K  e.  NN  /\  2  e.  NN )  ->  ( K  x.  2 )  e.  NN )
2119, 9, 20sylancl 646 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  e.  NN )
2221nnred 9694 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  e.  RR )
2311adantr 453 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  e.  NN )
2423nnred 9694 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  e.  RR )
2513adantr 453 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  N  e.  NN )
2625nnred 9694 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  N  e.  RR )
278, 26syl5eqelr 2341 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( 2  x.  M )  +  1 )  e.  RR )
2819nncnd 9695 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  CC )
29 2cn 9749 . . . . . . . 8  |-  2  e.  CC
30 mulcom 8756 . . . . . . . 8  |-  ( ( K  e.  CC  /\  2  e.  CC )  ->  ( K  x.  2 )  =  ( 2  x.  K ) )
3128, 29, 30sylancl 646 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  =  ( 2  x.  K ) )
32 elfzle2 10731 . . . . . . . . 9  |-  ( K  e.  ( 1 ... M )  ->  K  <_  M )
3332adantl 454 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  <_  M
)
3419nnred 9694 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  RR )
35 nnre 9686 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  RR )
3635adantr 453 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  M  e.  RR )
37 2re 9748 . . . . . . . . . . 11  |-  2  e.  RR
38 2pos 9761 . . . . . . . . . . 11  |-  0  <  2
3937, 38pm3.2i 443 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
4039a1i 12 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
41 lemul2 9542 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( K  <_  M 
<->  ( 2  x.  K
)  <_  ( 2  x.  M ) ) )
4234, 36, 40, 41syl3anc 1187 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  <_  M 
<->  ( 2  x.  K
)  <_  ( 2  x.  M ) ) )
4333, 42mpbid 203 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  K )  <_  (
2  x.  M ) )
4431, 43eqbrtrd 3983 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <_  (
2  x.  M ) )
4524ltp1d 9620 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  <  (
( 2  x.  M
)  +  1 ) )
4622, 24, 27, 44, 45lelttrd 8907 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <  (
( 2  x.  M
)  +  1 ) )
4746, 8syl6breqr 4003 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <  N
)
48 remulcl 8755 . . . . . 6  |-  ( ( K  e.  RR  /\  pi  e.  RR )  -> 
( K  x.  pi )  e.  RR )
4934, 3, 48sylancl 646 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  pi )  e.  RR )
5021nngt0d 9722 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  ( K  x.  2 ) )
5125nngt0d 9722 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  N
)
527adantl 454 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  pi )  e.  RR+ )
5352rpgt0d 10325 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  ( K  x.  pi )
)
54 ltdiv2OLD 9575 . . . . 5  |-  ( ( ( ( K  x.  2 )  e.  RR  /\  N  e.  RR  /\  ( K  x.  pi )  e.  RR )  /\  ( 0  <  ( K  x.  2 )  /\  0  <  N  /\  0  <  ( K  x.  pi ) ) )  ->  ( ( K  x.  2 )  <  N  <->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) ) )
5522, 26, 49, 50, 51, 53, 54syl33anc 1202 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  2 )  < 
N  <->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) ) )
5647, 55mpbid 203 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) )
573recni 8782 . . . . 5  |-  pi  e.  CC
5857a1i 12 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  pi  e.  CC )
59 2ne0 9762 . . . . . 6  |-  2  =/=  0
6029, 59pm3.2i 443 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
6160a1i 12 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
6219nnne0d 9723 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  =/=  0
)
63 divcan5 9395 . . . 4  |-  ( ( pi  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( K  x.  pi )  /  ( K  x.  2 ) )  =  ( pi 
/  2 ) )
6458, 61, 28, 62, 63syl112anc 1191 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  / 
( K  x.  2 ) )  =  ( pi  /  2 ) )
6556, 64breqtrd 3987 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) )
66 0xr 8811 . . 3  |-  0  e.  RR*
67 rehalfcl 9870 . . . 4  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
68 rexr 8810 . . . 4  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
693, 67, 68mp2b 11 . . 3  |-  ( pi 
/  2 )  e. 
RR*
70 elioo2 10628 . . 3  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( ( K  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( (
( K  x.  pi )  /  N )  e.  RR  /\  0  < 
( ( K  x.  pi )  /  N
)  /\  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) ) ) )
7166, 69, 70mp2an 656 . 2  |-  ( ( ( K  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  <->  ( ( ( K  x.  pi )  /  N )  e.  RR  /\  0  < 
( ( K  x.  pi )  /  N
)  /\  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) ) )
7217, 18, 65, 71syl3anbrc 1141 1  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675   RR*cxr 8799    < clt 8800    <_ cle 8801    / cdiv 9356   NNcn 9679   2c2 9728   RR+crp 10286   (,)cioo 10587   ...cfz 10713   picpi 12275
This theorem is referenced by:  basellem4  20248  basellem8  20252
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276  df-sin 12278  df-cos 12279  df-pi 12281  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144
  Copyright terms: Public domain W3C validator