MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Unicode version

Theorem basellem1 20314
Description: Lemma for basel 20323. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypothesis
Ref Expression
basel.n  |-  N  =  ( ( 2  x.  M )  +  1 )
Assertion
Ref Expression
basellem1  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 10815 . . . . . 6  |-  ( K  e.  ( 1 ... M )  ->  K  e.  NN )
21nnrpd 10385 . . . . 5  |-  ( K  e.  ( 1 ... M )  ->  K  e.  RR+ )
3 pire 19828 . . . . . 6  |-  pi  e.  RR
4 pipos 19829 . . . . . 6  |-  0  <  pi
53, 4elrpii 10353 . . . . 5  |-  pi  e.  RR+
6 rpmulcl 10371 . . . . 5  |-  ( ( K  e.  RR+  /\  pi  e.  RR+ )  ->  ( K  x.  pi )  e.  RR+ )
72, 5, 6sylancl 643 . . . 4  |-  ( K  e.  ( 1 ... M )  ->  ( K  x.  pi )  e.  RR+ )
8 basel.n . . . . . 6  |-  N  =  ( ( 2  x.  M )  +  1 )
9 2nn 9873 . . . . . . . 8  |-  2  e.  NN
10 nnmulcl 9765 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  M  e.  NN )  ->  ( 2  x.  M
)  e.  NN )
119, 10mpan 651 . . . . . . 7  |-  ( M  e.  NN  ->  (
2  x.  M )  e.  NN )
1211peano2nnd 9759 . . . . . 6  |-  ( M  e.  NN  ->  (
( 2  x.  M
)  +  1 )  e.  NN )
138, 12syl5eqel 2368 . . . . 5  |-  ( M  e.  NN  ->  N  e.  NN )
1413nnrpd 10385 . . . 4  |-  ( M  e.  NN  ->  N  e.  RR+ )
15 rpdivcl 10372 . . . 4  |-  ( ( ( K  x.  pi )  e.  RR+  /\  N  e.  RR+ )  ->  (
( K  x.  pi )  /  N )  e.  RR+ )
167, 14, 15syl2anr 464 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  RR+ )
1716rpred 10386 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  RR )
1816rpgt0d 10389 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  (
( K  x.  pi )  /  N ) )
191adantl 452 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  NN )
20 nnmulcl 9765 . . . . . . . 8  |-  ( ( K  e.  NN  /\  2  e.  NN )  ->  ( K  x.  2 )  e.  NN )
2119, 9, 20sylancl 643 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  e.  NN )
2221nnred 9757 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  e.  RR )
2311adantr 451 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  e.  NN )
2423nnred 9757 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  e.  RR )
2513adantr 451 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  N  e.  NN )
2625nnred 9757 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  N  e.  RR )
278, 26syl5eqelr 2369 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( 2  x.  M )  +  1 )  e.  RR )
2819nncnd 9758 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  CC )
29 2cn 9812 . . . . . . . 8  |-  2  e.  CC
30 mulcom 8819 . . . . . . . 8  |-  ( ( K  e.  CC  /\  2  e.  CC )  ->  ( K  x.  2 )  =  ( 2  x.  K ) )
3128, 29, 30sylancl 643 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  =  ( 2  x.  K ) )
32 elfzle2 10796 . . . . . . . . 9  |-  ( K  e.  ( 1 ... M )  ->  K  <_  M )
3332adantl 452 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  <_  M
)
3419nnred 9757 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  e.  RR )
35 nnre 9749 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  RR )
3635adantr 451 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  M  e.  RR )
37 2re 9811 . . . . . . . . . . 11  |-  2  e.  RR
38 2pos 9824 . . . . . . . . . . 11  |-  0  <  2
3937, 38pm3.2i 441 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
4039a1i 10 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
41 lemul2 9605 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  M  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( K  <_  M 
<->  ( 2  x.  K
)  <_  ( 2  x.  M ) ) )
4234, 36, 40, 41syl3anc 1182 . . . . . . . 8  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  <_  M 
<->  ( 2  x.  K
)  <_  ( 2  x.  M ) ) )
4333, 42mpbid 201 . . . . . . 7  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  K )  <_  (
2  x.  M ) )
4431, 43eqbrtrd 4044 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <_  (
2  x.  M ) )
4524ltp1d 9683 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  x.  M )  <  (
( 2  x.  M
)  +  1 ) )
4622, 24, 27, 44, 45lelttrd 8970 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <  (
( 2  x.  M
)  +  1 ) )
4746, 8syl6breqr 4064 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  2 )  <  N
)
48 remulcl 8818 . . . . . 6  |-  ( ( K  e.  RR  /\  pi  e.  RR )  -> 
( K  x.  pi )  e.  RR )
4934, 3, 48sylancl 643 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  pi )  e.  RR )
5021nngt0d 9785 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  ( K  x.  2 ) )
5125nngt0d 9785 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  N
)
527adantl 452 . . . . . 6  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( K  x.  pi )  e.  RR+ )
5352rpgt0d 10389 . . . . 5  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  0  <  ( K  x.  pi )
)
54 ltdiv2OLD 9638 . . . . 5  |-  ( ( ( ( K  x.  2 )  e.  RR  /\  N  e.  RR  /\  ( K  x.  pi )  e.  RR )  /\  ( 0  <  ( K  x.  2 )  /\  0  <  N  /\  0  <  ( K  x.  pi ) ) )  ->  ( ( K  x.  2 )  <  N  <->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) ) )
5522, 26, 49, 50, 51, 53, 54syl33anc 1197 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  2 )  < 
N  <->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) ) )
5647, 55mpbid 201 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  <  (
( K  x.  pi )  /  ( K  x.  2 ) ) )
573recni 8845 . . . . 5  |-  pi  e.  CC
5857a1i 10 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  pi  e.  CC )
59 2ne0 9825 . . . . . 6  |-  2  =/=  0
6029, 59pm3.2i 441 . . . . 5  |-  ( 2  e.  CC  /\  2  =/=  0 )
6160a1i 10 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
6219nnne0d 9786 . . . 4  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  K  =/=  0
)
63 divcan5 9458 . . . 4  |-  ( ( pi  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( K  x.  pi )  /  ( K  x.  2 ) )  =  ( pi 
/  2 ) )
6458, 61, 28, 62, 63syl112anc 1186 . . 3  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  / 
( K  x.  2 ) )  =  ( pi  /  2 ) )
6556, 64breqtrd 4048 . 2  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) )
66 0xr 8874 . . 3  |-  0  e.  RR*
67 rehalfcl 9934 . . . 4  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
68 rexr 8873 . . . 4  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
693, 67, 68mp2b 9 . . 3  |-  ( pi 
/  2 )  e. 
RR*
70 elioo2 10693 . . 3  |-  ( ( 0  e.  RR*  /\  (
pi  /  2 )  e.  RR* )  ->  (
( ( K  x.  pi )  /  N
)  e.  ( 0 (,) ( pi  / 
2 ) )  <->  ( (
( K  x.  pi )  /  N )  e.  RR  /\  0  < 
( ( K  x.  pi )  /  N
)  /\  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) ) ) )
7166, 69, 70mp2an 653 . 2  |-  ( ( ( K  x.  pi )  /  N )  e.  ( 0 (,) (
pi  /  2 ) )  <->  ( ( ( K  x.  pi )  /  N )  e.  RR  /\  0  < 
( ( K  x.  pi )  /  N
)  /\  ( ( K  x.  pi )  /  N )  <  (
pi  /  2 ) ) )
7217, 18, 65, 71syl3anbrc 1136 1  |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi )  /  N )  e.  ( 0 (,) ( pi 
/  2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738   RR*cxr 8862    < clt 8863    <_ cle 8864    / cdiv 9419   NNcn 9742   2c2 9791   RR+crp 10350   (,)cioo 10652   ...cfz 10778   picpi 12344
This theorem is referenced by:  basellem4  20317  basellem8  20321
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213
  Copyright terms: Public domain W3C validator