MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basgen2 Unicode version

Theorem basgen2 16723
Description: Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  ->  ( topGen `  B
)  =  J )
Distinct variable groups:    x, y,
z, B    x, J, y, z

Proof of Theorem basgen2
StepHypRef Expression
1 dfss3 3171 . . . 4  |-  ( J 
C_  ( topGen `  B
)  <->  A. x  e.  J  x  e.  ( topGen `  B ) )
2 ssexg 4161 . . . . . . 7  |-  ( ( B  C_  J  /\  J  e.  Top )  ->  B  e.  _V )
32ancoms 439 . . . . . 6  |-  ( ( J  e.  Top  /\  B  C_  J )  ->  B  e.  _V )
4 eltg2b 16693 . . . . . 6  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
53, 4syl 15 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( x  e.  (
topGen `  B )  <->  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
65ralbidv 2564 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( A. x  e.  J  x  e.  (
topGen `  B )  <->  A. x  e.  J  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
71, 6syl5bb 248 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( J  C_  ( topGen `
 B )  <->  A. x  e.  J  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
87biimp3ar 1282 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  ->  J  C_  ( topGen `
 B ) )
9 basgen 16722 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  J )
108, 9syld3an3 1227 1  |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  ->  ( topGen `  B
)  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   A.wral 2544   E.wrex 2545   _Vcvv 2789    C_ wss 3153   ` cfv 5221   topGenctg 13338   Topctop 16627
This theorem is referenced by:  pptbas  16741  2ndcctbss  17177  2ndcomap  17180  dis2ndc  17182  met2ndci  18064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-topgen 13340  df-top 16632
  Copyright terms: Public domain W3C validator