MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcpasc Unicode version

Theorem bcpasc 11327
Description: Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 9999 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2 elfzp12 10855 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
3 nn0uz 10257 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleq2s 2376 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
51, 4syl 17 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
6 ax-1cn 8790 . . . . . . . . 9  |-  1  e.  CC
76addid1i 8994 . . . . . . . 8  |-  ( 1  +  0 )  =  1
8 bcn0 11317 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  0 )  =  1 )
9 0z 10030 . . . . . . . . . . 11  |-  0  e.  ZZ
10 1z 10048 . . . . . . . . . . 11  |-  1  e.  ZZ
11 zsubcl 10056 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( 0  -  1 )  e.  ZZ )
129, 10, 11mp2an 655 . . . . . . . . . 10  |-  ( 0  -  1 )  e.  ZZ
13 0re 8833 . . . . . . . . . . . 12  |-  0  e.  RR
14 ltm1 9591 . . . . . . . . . . . 12  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
1513, 14ax-mp 10 . . . . . . . . . . 11  |-  ( 0  -  1 )  <  0
1615orci 381 . . . . . . . . . 10  |-  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) )
17 bcval4 11314 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 0  -  1 )  e.  ZZ  /\  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) ) )  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
1812, 16, 17mp3an23 1271 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
198, 18oveq12d 5837 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( 1  +  0 ) )
20 bcn0 11317 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
211, 20syl 17 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
227, 19, 213eqtr4a 2342 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( ( N  + 
1 )  _C  0
) )
23 oveq2 5827 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  K )  =  ( N  _C  0
) )
24 oveq1 5826 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  -  1 )  =  ( 0  -  1 ) )
2524oveq2d 5835 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  ( K  - 
1 ) )  =  ( N  _C  (
0  -  1 ) ) )
2623, 25oveq12d 5837 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) ) )
27 oveq2 5827 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  0 ) )
2826, 27eqeq12d 2298 . . . . . . 7  |-  ( K  =  0  ->  (
( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K )  <->  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) )  =  ( ( N  +  1 )  _C  0 ) ) )
2922, 28syl5ibrcom 215 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
30 simpr 449 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
31 0p1e1 9834 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3231oveq1i 5829 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
3330, 32syl6eleq 2374 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
34 nn0p1nn 9998 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
35 nnuz 10258 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3634, 35syl6eleq 2374 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  1 )
)
37 fzm1 10856 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) ) )
3837biimpa 472 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ( ZZ>= ` 
1 )  /\  K  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )
3936, 38sylan 459 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) )
40 nn0cn 9970 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  CC )
41 pncan 9052 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4240, 6, 41sylancl 645 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
4342oveq2d 5835 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
4443eleq2d 2351 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( K  e.  ( 1 ... ( ( N  + 
1 )  -  1 ) )  <->  K  e.  ( 1 ... N
) ) )
4544biimpa 472 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  K  e.  ( 1 ... N ) )
46 1nn0 9976 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
4746, 3eleqtri 2356 . . . . . . . . . . . . . . 15  |-  1  e.  ( ZZ>= `  0 )
48 fzss1 10824 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
4947, 48ax-mp 10 . . . . . . . . . . . . . 14  |-  ( 1 ... N )  C_  ( 0 ... N
)
5049sseli 3177 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
51 bcp1n 11322 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
5250, 51syl 17 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
53 bcrpcl 11315 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
5450, 53syl 17 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  RR+ )
5554rpcnd 10387 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  CC )
56 elfzuz2 10795 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
5756, 35syl6eleqr 2375 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
5857peano2nnd 9758 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  NN )
5958nncnd 9757 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  CC )
6057nncnd 9757 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
616a1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
62 elfzelz 10792 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
6362zcnd 10113 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
6460, 61, 63addsubd 9173 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =  ( ( N  -  K )  +  1 ) )
65 fznn0sub 10818 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
66 nn0p1nn 9998 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
6765, 66syl 17 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
6864, 67eqeltrd 2358 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
6968nncnd 9757 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
7068nnne0d 9785 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =/=  0 )
7155, 59, 69, 70div12d 9567 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( N  +  1 )  x.  ( ( N  _C  K )  /  (
( N  +  1 )  -  K ) ) ) )
7268nnrpd 10384 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR+ )
7354, 72rpdivcld 10402 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  RR+ )
7473rpcnd 10387 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  CC )
7559, 74mulcomd 8851 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  x.  ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7671, 75eqtrd 2316 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7759, 63npcand 9156 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  +  K )  =  ( N  + 
1 ) )
7877oveq2d 5835 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7974, 69, 63adddid 8854 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
8076, 78, 793eqtr2d 2322 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
8155, 69, 70divcan1d 9532 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  =  ( N  _C  K ) )
82 elfznn 10813 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
8382nnne0d 9785 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  K  =/=  0 )
8455, 69, 63, 70, 83divdiv2d 9563 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( ( ( N  _C  K )  x.  K )  / 
( ( N  + 
1 )  -  K
) ) )
85 bcm1k 11321 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
8660, 63, 61subsub3d 9182 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
8786oveq1d 5834 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  +  1 )  -  K )  /  K ) )
8887oveq2d 5835 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( N  _C  ( K  - 
1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K
) ) )
8985, 88eqtrd 2316 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( ( N  + 
1 )  -  K
)  /  K ) ) )
90 fzelp1 10832 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
9158nnzd 10111 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  ZZ )
92 elfzm1b 10854 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ) )
9362, 91, 92syl2anc 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... ( N  + 
1 ) )  <->  ( K  -  1 )  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ) )
9490, 93mpbid 203 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) ) )
9560, 6, 41sylancl 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  1 )  =  N )
9695oveq2d 5835 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
9794, 96eleqtrd 2360 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
98 bcrpcl 11315 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9997, 98syl 17 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
10099rpcnd 10387 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  CC )
10182nnrpd 10384 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  RR+ )
10272, 101rpdivcld 10402 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  RR+ )
103102rpcnd 10387 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  CC )
104102rpne0d 10390 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  =/=  0 )
10555, 100, 103, 104divmul3d 9565 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( ( N  + 
1 )  -  K
)  /  K ) )  =  ( N  _C  ( K  - 
1 ) )  <->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K ) ) ) )
10689, 105mpbird 225 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( N  _C  ( K  -  1
) ) )
10755, 63, 69, 70div23d 9568 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  x.  K
)  /  ( ( N  +  1 )  -  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  K ) )
10884, 106, 1073eqtr3rd 2325 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  K )  =  ( N  _C  ( K  -  1
) ) )
10981, 108oveq12d 5837 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  K ) )  =  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) ) )
11052, 80, 1093eqtrrd 2321 . . . . . . . . . . 11  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
11145, 110syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
112 oveq2 5827 . . . . . . . . . . . . 13  |-  ( K  =  ( N  + 
1 )  ->  ( N  _C  K )  =  ( N  _C  ( N  +  1 ) ) )
11334nnzd 10111 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
114 nn0re 9969 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  N  e.  RR )
115114ltp1d 9682 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  < 
( N  +  1 ) )
116115olcd 384 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  <  0  \/  N  <  ( N  +  1 ) ) )
117 bcval4 11314 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( N  +  1
)  e.  ZZ  /\  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )  ->  ( N  _C  ( N  +  1 ) )  =  0 )
118113, 116, 117mpd3an23 1281 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  _C  ( N  + 
1 ) )  =  0 )
119112, 118sylan9eqr 2338 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  K )  =  0 )
120 oveq1 5826 . . . . . . . . . . . . . . 15  |-  ( K  =  ( N  + 
1 )  ->  ( K  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
121120, 42sylan9eqr 2338 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( K  - 
1 )  =  N )
122121oveq2d 5835 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  ( N  _C  N ) )
123 bcnn 11318 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
124123adantr 453 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  N )  =  1 )
125122, 124eqtrd 2316 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  1 )
126119, 125oveq12d 5837 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( 0  +  1 ) )
127 oveq2 5827 . . . . . . . . . . . 12  |-  ( K  =  ( N  + 
1 )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  ( N  +  1 ) ) )
128 bcnn 11318 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
1291, 128syl 17 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
130127, 129sylan9eqr 2338 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  +  1 )  _C  K )  =  1 )
13131, 126, 1303eqtr4a 2342 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
132111, 131jaodan 762 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( K  e.  (
1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13339, 132syldan 458 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13433, 133syldan 458 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
135134ex 425 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
13629, 135jaod 371 . . . . 5  |-  ( N  e.  NN0  ->  ( ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
1375, 136sylbid 208 . . . 4  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
138137imp 420 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
139138adantlr 697 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
140 00id 8982 . . 3  |-  ( 0  +  0 )  =  0
141 fzelp1 10832 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
142141con3i 129 . . . . 5  |-  ( -.  K  e.  ( 0 ... ( N  + 
1 ) )  ->  -.  K  e.  (
0 ... N ) )
143 bcval3 11313 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1441433expa 1153 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
145142, 144sylan2 462 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  K )  =  0 )
146 simpll 732 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  N  e.  NN0 )
147 simplr 733 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  K  e.  ZZ )
148 peano2zm 10057 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
149147, 148syl 17 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( K  -  1 )  e.  ZZ )
15040adantr 453 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  CC )
151150, 6, 41sylancl 645 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  + 
1 )  -  1 )  =  N )
152151oveq2d 5835 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
153152eleq2d 2351 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... N ) ) )
154 id 21 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
1551nn0zd 10110 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
156154, 155, 92syl2anr 466 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ) )
157 fzp1ss 10831 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
1589, 157ax-mp 10 . . . . . . . . . 10  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
15932, 158eqsstr3i 3210 . . . . . . . . 9  |-  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
160159sseli 3177 . . . . . . . 8  |-  ( K  e.  ( 1 ... ( N  +  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
161156, 160syl6bir 222 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
162153, 161sylbird 228 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
163162con3and 430 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  ( K  -  1
)  e.  ( 0 ... N ) )
164 bcval3 11313 . . . . 5  |-  ( ( N  e.  NN0  /\  ( K  -  1
)  e.  ZZ  /\  -.  ( K  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( K  -  1
) )  =  0 )
165146, 149, 163, 164syl3anc 1184 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( K  - 
1 ) )  =  0 )
166145, 165oveq12d 5837 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( 0  +  0 ) )
167146, 1syl 17 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  NN0 )
168 simpr 449 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )
169 bcval3 11313 . . . 4  |-  ( ( ( N  +  1 )  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  +  1 )  _C  K )  =  0 )
170167, 147, 168, 169syl3anc 1184 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  +  1 )  _C  K )  =  0 )
171140, 166, 1703eqtr4a 2342 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
172139, 171pm2.61dan 768 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1624    e. wcel 1685    C_ wss 3153   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    < clt 8862    - cmin 9032    / cdiv 9418   NNcn 9741   NN0cn0 9960   ZZcz 10019   ZZ>=cuz 10225   RR+crp 10349   ...cfz 10776    _C cbc 11309
This theorem is referenced by:  bccl  11328  hashbclem  11384  binomlem  12281  bcxmas  12288  bcp1ctr  20512
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-fz 10777  df-seq 11041  df-fac 11283  df-bc 11310
  Copyright terms: Public domain W3C validator