HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcsiALT Structured version   Unicode version

Theorem bcsiALT 22681
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
bcs.1  |-  A  e. 
~H
bcs.2  |-  B  e. 
~H
Assertion
Ref Expression
bcsiALT  |-  ( abs `  ( A  .ih  B
) )  <_  (
( normh `  A )  x.  ( normh `  B )
)

Proof of Theorem bcsiALT
StepHypRef Expression
1 fveq2 5728 . . 3  |-  ( ( A  .ih  B )  =  0  ->  ( abs `  ( A  .ih  B ) )  =  ( abs `  0 ) )
2 abs0 12090 . . . 4  |-  ( abs `  0 )  =  0
3 bcs.1 . . . . . 6  |-  A  e. 
~H
4 normge0 22628 . . . . . 6  |-  ( A  e.  ~H  ->  0  <_  ( normh `  A )
)
53, 4ax-mp 8 . . . . 5  |-  0  <_  ( normh `  A )
6 bcs.2 . . . . . 6  |-  B  e. 
~H
7 normge0 22628 . . . . . 6  |-  ( B  e.  ~H  ->  0  <_  ( normh `  B )
)
86, 7ax-mp 8 . . . . 5  |-  0  <_  ( normh `  B )
93normcli 22633 . . . . . 6  |-  ( normh `  A )  e.  RR
106normcli 22633 . . . . . 6  |-  ( normh `  B )  e.  RR
119, 10mulge0i 9574 . . . . 5  |-  ( ( 0  <_  ( normh `  A )  /\  0  <_  ( normh `  B )
)  ->  0  <_  ( ( normh `  A )  x.  ( normh `  B )
) )
125, 8, 11mp2an 654 . . . 4  |-  0  <_  ( ( normh `  A
)  x.  ( normh `  B ) )
132, 12eqbrtri 4231 . . 3  |-  ( abs `  0 )  <_ 
( ( normh `  A
)  x.  ( normh `  B ) )
141, 13syl6eqbr 4249 . 2  |-  ( ( A  .ih  B )  =  0  ->  ( abs `  ( A  .ih  B ) )  <_  (
( normh `  A )  x.  ( normh `  B )
) )
15 df-ne 2601 . . . 4  |-  ( ( A  .ih  B )  =/=  0  <->  -.  ( A  .ih  B )  =  0 )
166, 3his1i 22602 . . . . . . . 8  |-  ( B 
.ih  A )  =  ( * `  ( A  .ih  B ) )
1716oveq2i 6092 . . . . . . 7  |-  ( ( ( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) )  =  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( * `  ( A  .ih  B ) ) )
1817oveq2i 6092 . . . . . 6  |-  ( ( ( * `  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) ) )  =  ( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( * `
 ( A  .ih  B ) ) ) )
193, 6hicli 22583 . . . . . . 7  |-  ( A 
.ih  B )  e.  CC
20 abslem2 12143 . . . . . . 7  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 )  -> 
( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( * `
 ( A  .ih  B ) ) ) )  =  ( 2  x.  ( abs `  ( A  .ih  B ) ) ) )
2119, 20mpan 652 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( * `  ( A  .ih  B ) ) ) )  =  ( 2  x.  ( abs `  ( A  .ih  B
) ) ) )
2218, 21syl5req 2481 . . . . 5  |-  ( ( A  .ih  B )  =/=  0  ->  (
2  x.  ( abs `  ( A  .ih  B
) ) )  =  ( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( B 
.ih  A ) ) ) )
2319abs00i 12201 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =  0  <->  ( A  .ih  B )  =  0 )
2423necon3bii 2633 . . . . . . 7  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  <->  ( A  .ih  B )  =/=  0
)
2519abscli 12198 . . . . . . . . . 10  |-  ( abs `  ( A  .ih  B
) )  e.  RR
2625recni 9102 . . . . . . . . 9  |-  ( abs `  ( A  .ih  B
) )  e.  CC
2719, 26divclzi 9749 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  e.  CC )
2819, 26divreczi 9752 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  =  ( ( A  .ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )
2928fveq2d 5732 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  =  ( abs `  ( ( A  .ih  B )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) ) )
3026recclzi 9739 . . . . . . . . . . 11  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
1  /  ( abs `  ( A  .ih  B
) ) )  e.  CC )
31 absmul 12099 . . . . . . . . . . 11  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  CC )  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) ) )
3219, 30, 31sylancr 645 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) ) )
3325rerecclzi 9778 . . . . . . . . . . . 12  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
1  /  ( abs `  ( A  .ih  B
) ) )  e.  RR )
34 0re 9091 . . . . . . . . . . . . . 14  |-  0  e.  RR
3533, 34jctil 524 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
0  e.  RR  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  RR ) )
3619absgt0i 12202 . . . . . . . . . . . . . . 15  |-  ( ( A  .ih  B )  =/=  0  <->  0  <  ( abs `  ( A 
.ih  B ) ) )
3724, 36bitri 241 . . . . . . . . . . . . . 14  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  <->  0  <  ( abs `  ( A 
.ih  B ) ) )
3825recgt0i 9915 . . . . . . . . . . . . . 14  |-  ( 0  <  ( abs `  ( A  .ih  B ) )  ->  0  <  (
1  /  ( abs `  ( A  .ih  B
) ) ) )
3937, 38sylbi 188 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  0  <  ( 1  /  ( abs `  ( A  .ih  B ) ) ) )
40 ltle 9163 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  RR )  ->  (
0  <  ( 1  /  ( abs `  ( A  .ih  B ) ) )  ->  0  <_  ( 1  /  ( abs `  ( A  .ih  B
) ) ) ) )
4135, 39, 40sylc 58 . . . . . . . . . . . 12  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  0  <_  ( 1  /  ( abs `  ( A  .ih  B ) ) ) )
4233, 41absidd 12225 . . . . . . . . . . 11  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( 1  / 
( abs `  ( A  .ih  B ) ) ) )  =  ( 1  /  ( abs `  ( A  .ih  B
) ) ) )
4342oveq2d 6097 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( abs `  ( A  .ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) )
4432, 43eqtrd 2468 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) )
4526recidzi 9741 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( abs `  ( A  .ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) )  =  1 )
4629, 44, 453eqtrd 2472 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  =  1 )
4727, 46jca 519 . . . . . . 7  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 ) )
4824, 47sylbir 205 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 ) )
493, 6normlem7tALT 22621 . . . . . 6  |-  ( ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 )  -> 
( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( B 
.ih  A ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5048, 49syl 16 . . . . 5  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5122, 50eqbrtrd 4232 . . . 4  |-  ( ( A  .ih  B )  =/=  0  ->  (
2  x.  ( abs `  ( A  .ih  B
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5215, 51sylbir 205 . . 3  |-  ( -.  ( A  .ih  B
)  =  0  -> 
( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5310recni 9102 . . . . . 6  |-  ( normh `  B )  e.  CC
549recni 9102 . . . . . 6  |-  ( normh `  A )  e.  CC
55 normval 22626 . . . . . . . 8  |-  ( B  e.  ~H  ->  ( normh `  B )  =  ( sqr `  ( B  .ih  B ) ) )
566, 55ax-mp 8 . . . . . . 7  |-  ( normh `  B )  =  ( sqr `  ( B 
.ih  B ) )
57 normval 22626 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  =  ( sqr `  ( A  .ih  A ) ) )
583, 57ax-mp 8 . . . . . . 7  |-  ( normh `  A )  =  ( sqr `  ( A 
.ih  A ) )
5956, 58oveq12i 6093 . . . . . 6  |-  ( (
normh `  B )  x.  ( normh `  A )
)  =  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )
6053, 54, 59mulcomli 9097 . . . . 5  |-  ( (
normh `  A )  x.  ( normh `  B )
)  =  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )
6160breq2i 4220 . . . 4  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) )  <-> 
( abs `  ( A  .ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) )
62 2pos 10082 . . . . 5  |-  0  <  2
63 hiidge0 22600 . . . . . . . 8  |-  ( B  e.  ~H  ->  0  <_  ( B  .ih  B
) )
64 hiidrcl 22597 . . . . . . . . . 10  |-  ( B  e.  ~H  ->  ( B  .ih  B )  e.  RR )
656, 64ax-mp 8 . . . . . . . . 9  |-  ( B 
.ih  B )  e.  RR
6665sqrcli 12175 . . . . . . . 8  |-  ( 0  <_  ( B  .ih  B )  ->  ( sqr `  ( B  .ih  B
) )  e.  RR )
676, 63, 66mp2b 10 . . . . . . 7  |-  ( sqr `  ( B  .ih  B
) )  e.  RR
68 hiidge0 22600 . . . . . . . 8  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
69 hiidrcl 22597 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
703, 69ax-mp 8 . . . . . . . . 9  |-  ( A 
.ih  A )  e.  RR
7170sqrcli 12175 . . . . . . . 8  |-  ( 0  <_  ( A  .ih  A )  ->  ( sqr `  ( A  .ih  A
) )  e.  RR )
723, 68, 71mp2b 10 . . . . . . 7  |-  ( sqr `  ( A  .ih  A
) )  e.  RR
7367, 72remulcli 9104 . . . . . 6  |-  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )  e.  RR
74 2re 10069 . . . . . 6  |-  2  e.  RR
7525, 73, 74lemul2i 9934 . . . . 5  |-  ( 0  <  2  ->  (
( abs `  ( A  .ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) )  <->  ( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) ) )
7662, 75ax-mp 8 . . . 4  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) )  <->  ( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
7761, 76bitri 241 . . 3  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) )  <-> 
( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
7852, 77sylibr 204 . 2  |-  ( -.  ( A  .ih  B
)  =  0  -> 
( abs `  ( A  .ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) ) )
7914, 78pm2.61i 158 1  |-  ( abs `  ( A  .ih  B
) )  <_  (
( normh `  A )  x.  ( normh `  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    / cdiv 9677   2c2 10049   *ccj 11901   sqrcsqr 12038   abscabs 12039   ~Hchil 22422    .ih csp 22425   normhcno 22426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-hfvadd 22503  ax-hv0cl 22506  ax-hfvmul 22508  ax-hvmulass 22510  ax-hvmul0 22513  ax-hfi 22581  ax-his1 22584  ax-his2 22585  ax-his3 22586  ax-his4 22587
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-hnorm 22471  df-hvsub 22474
  Copyright terms: Public domain W3C validator