HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcsiALT Unicode version

Theorem bcsiALT 22634
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
bcs.1  |-  A  e. 
~H
bcs.2  |-  B  e. 
~H
Assertion
Ref Expression
bcsiALT  |-  ( abs `  ( A  .ih  B
) )  <_  (
( normh `  A )  x.  ( normh `  B )
)

Proof of Theorem bcsiALT
StepHypRef Expression
1 fveq2 5687 . . 3  |-  ( ( A  .ih  B )  =  0  ->  ( abs `  ( A  .ih  B ) )  =  ( abs `  0 ) )
2 abs0 12045 . . . 4  |-  ( abs `  0 )  =  0
3 bcs.1 . . . . . 6  |-  A  e. 
~H
4 normge0 22581 . . . . . 6  |-  ( A  e.  ~H  ->  0  <_  ( normh `  A )
)
53, 4ax-mp 8 . . . . 5  |-  0  <_  ( normh `  A )
6 bcs.2 . . . . . 6  |-  B  e. 
~H
7 normge0 22581 . . . . . 6  |-  ( B  e.  ~H  ->  0  <_  ( normh `  B )
)
86, 7ax-mp 8 . . . . 5  |-  0  <_  ( normh `  B )
93normcli 22586 . . . . . 6  |-  ( normh `  A )  e.  RR
106normcli 22586 . . . . . 6  |-  ( normh `  B )  e.  RR
119, 10mulge0i 9530 . . . . 5  |-  ( ( 0  <_  ( normh `  A )  /\  0  <_  ( normh `  B )
)  ->  0  <_  ( ( normh `  A )  x.  ( normh `  B )
) )
125, 8, 11mp2an 654 . . . 4  |-  0  <_  ( ( normh `  A
)  x.  ( normh `  B ) )
132, 12eqbrtri 4191 . . 3  |-  ( abs `  0 )  <_ 
( ( normh `  A
)  x.  ( normh `  B ) )
141, 13syl6eqbr 4209 . 2  |-  ( ( A  .ih  B )  =  0  ->  ( abs `  ( A  .ih  B ) )  <_  (
( normh `  A )  x.  ( normh `  B )
) )
15 df-ne 2569 . . . 4  |-  ( ( A  .ih  B )  =/=  0  <->  -.  ( A  .ih  B )  =  0 )
166, 3his1i 22555 . . . . . . . 8  |-  ( B 
.ih  A )  =  ( * `  ( A  .ih  B ) )
1716oveq2i 6051 . . . . . . 7  |-  ( ( ( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) )  =  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( * `  ( A  .ih  B ) ) )
1817oveq2i 6051 . . . . . 6  |-  ( ( ( * `  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) ) )  =  ( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( * `
 ( A  .ih  B ) ) ) )
193, 6hicli 22536 . . . . . . 7  |-  ( A 
.ih  B )  e.  CC
20 abslem2 12098 . . . . . . 7  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( A  .ih  B )  =/=  0 )  -> 
( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( * `
 ( A  .ih  B ) ) ) )  =  ( 2  x.  ( abs `  ( A  .ih  B ) ) ) )
2119, 20mpan 652 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( * `  ( A  .ih  B ) ) ) )  =  ( 2  x.  ( abs `  ( A  .ih  B
) ) ) )
2218, 21syl5req 2449 . . . . 5  |-  ( ( A  .ih  B )  =/=  0  ->  (
2  x.  ( abs `  ( A  .ih  B
) ) )  =  ( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( B 
.ih  A ) ) ) )
2319abs00i 12156 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =  0  <->  ( A  .ih  B )  =  0 )
2423necon3bii 2599 . . . . . . 7  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  <->  ( A  .ih  B )  =/=  0
)
2519abscli 12153 . . . . . . . . . 10  |-  ( abs `  ( A  .ih  B
) )  e.  RR
2625recni 9058 . . . . . . . . 9  |-  ( abs `  ( A  .ih  B
) )  e.  CC
2719, 26divclzi 9705 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  e.  CC )
2819, 26divreczi 9708 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( A  .ih  B
)  /  ( abs `  ( A  .ih  B
) ) )  =  ( ( A  .ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )
2928fveq2d 5691 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  =  ( abs `  ( ( A  .ih  B )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) ) )
3026recclzi 9695 . . . . . . . . . . 11  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
1  /  ( abs `  ( A  .ih  B
) ) )  e.  CC )
31 absmul 12054 . . . . . . . . . . 11  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  CC )  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) ) )
3219, 30, 31sylancr 645 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) ) )
3325rerecclzi 9734 . . . . . . . . . . . 12  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
1  /  ( abs `  ( A  .ih  B
) ) )  e.  RR )
34 0re 9047 . . . . . . . . . . . . . 14  |-  0  e.  RR
3533, 34jctil 524 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
0  e.  RR  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  RR ) )
3619absgt0i 12157 . . . . . . . . . . . . . . 15  |-  ( ( A  .ih  B )  =/=  0  <->  0  <  ( abs `  ( A 
.ih  B ) ) )
3724, 36bitri 241 . . . . . . . . . . . . . 14  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  <->  0  <  ( abs `  ( A 
.ih  B ) ) )
3825recgt0i 9871 . . . . . . . . . . . . . 14  |-  ( 0  <  ( abs `  ( A  .ih  B ) )  ->  0  <  (
1  /  ( abs `  ( A  .ih  B
) ) ) )
3937, 38sylbi 188 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  0  <  ( 1  /  ( abs `  ( A  .ih  B ) ) ) )
40 ltle 9119 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( 1  /  ( abs `  ( A  .ih  B ) ) )  e.  RR )  ->  (
0  <  ( 1  /  ( abs `  ( A  .ih  B ) ) )  ->  0  <_  ( 1  /  ( abs `  ( A  .ih  B
) ) ) ) )
4135, 39, 40sylc 58 . . . . . . . . . . . 12  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  0  <_  ( 1  /  ( abs `  ( A  .ih  B ) ) ) )
4233, 41absidd 12180 . . . . . . . . . . 11  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( 1  / 
( abs `  ( A  .ih  B ) ) ) )  =  ( 1  /  ( abs `  ( A  .ih  B
) ) ) )
4342oveq2d 6056 . . . . . . . . . 10  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( abs `  ( A  .ih  B ) )  x.  ( abs `  (
1  /  ( abs `  ( A  .ih  B
) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) )
4432, 43eqtrd 2436 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  x.  ( 1  /  ( abs `  ( A  .ih  B ) ) ) ) )  =  ( ( abs `  ( A 
.ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) ) )
4526recidzi 9697 . . . . . . . . 9  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( abs `  ( A  .ih  B ) )  x.  ( 1  / 
( abs `  ( A  .ih  B ) ) ) )  =  1 )
4629, 44, 453eqtrd 2440 . . . . . . . 8  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  ( abs `  ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  =  1 )
4727, 46jca 519 . . . . . . 7  |-  ( ( abs `  ( A 
.ih  B ) )  =/=  0  ->  (
( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 ) )
4824, 47sylbir 205 . . . . . 6  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 ) )
493, 6normlem7tALT 22574 . . . . . 6  |-  ( ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  e.  CC  /\  ( abs `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  =  1 )  -> 
( ( ( * `
 ( ( A 
.ih  B )  / 
( abs `  ( A  .ih  B ) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B ) ) )  x.  ( B 
.ih  A ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5048, 49syl 16 . . . . 5  |-  ( ( A  .ih  B )  =/=  0  ->  (
( ( * `  ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) ) )  x.  ( A  .ih  B ) )  +  ( ( ( A  .ih  B )  /  ( abs `  ( A  .ih  B
) ) )  x.  ( B  .ih  A
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5122, 50eqbrtrd 4192 . . . 4  |-  ( ( A  .ih  B )  =/=  0  ->  (
2  x.  ( abs `  ( A  .ih  B
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5215, 51sylbir 205 . . 3  |-  ( -.  ( A  .ih  B
)  =  0  -> 
( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
5310recni 9058 . . . . . 6  |-  ( normh `  B )  e.  CC
549recni 9058 . . . . . 6  |-  ( normh `  A )  e.  CC
55 normval 22579 . . . . . . . 8  |-  ( B  e.  ~H  ->  ( normh `  B )  =  ( sqr `  ( B  .ih  B ) ) )
566, 55ax-mp 8 . . . . . . 7  |-  ( normh `  B )  =  ( sqr `  ( B 
.ih  B ) )
57 normval 22579 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  A )  =  ( sqr `  ( A  .ih  A ) ) )
583, 57ax-mp 8 . . . . . . 7  |-  ( normh `  A )  =  ( sqr `  ( A 
.ih  A ) )
5956, 58oveq12i 6052 . . . . . 6  |-  ( (
normh `  B )  x.  ( normh `  A )
)  =  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )
6053, 54, 59mulcomli 9053 . . . . 5  |-  ( (
normh `  A )  x.  ( normh `  B )
)  =  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )
6160breq2i 4180 . . . 4  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) )  <-> 
( abs `  ( A  .ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) )
62 2pos 10038 . . . . 5  |-  0  <  2
63 hiidge0 22553 . . . . . . . 8  |-  ( B  e.  ~H  ->  0  <_  ( B  .ih  B
) )
64 hiidrcl 22550 . . . . . . . . . 10  |-  ( B  e.  ~H  ->  ( B  .ih  B )  e.  RR )
656, 64ax-mp 8 . . . . . . . . 9  |-  ( B 
.ih  B )  e.  RR
6665sqrcli 12130 . . . . . . . 8  |-  ( 0  <_  ( B  .ih  B )  ->  ( sqr `  ( B  .ih  B
) )  e.  RR )
676, 63, 66mp2b 10 . . . . . . 7  |-  ( sqr `  ( B  .ih  B
) )  e.  RR
68 hiidge0 22553 . . . . . . . 8  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
69 hiidrcl 22550 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
703, 69ax-mp 8 . . . . . . . . 9  |-  ( A 
.ih  A )  e.  RR
7170sqrcli 12130 . . . . . . . 8  |-  ( 0  <_  ( A  .ih  A )  ->  ( sqr `  ( A  .ih  A
) )  e.  RR )
723, 68, 71mp2b 10 . . . . . . 7  |-  ( sqr `  ( A  .ih  A
) )  e.  RR
7367, 72remulcli 9060 . . . . . 6  |-  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) )  e.  RR
74 2re 10025 . . . . . 6  |-  2  e.  RR
7525, 73, 74lemul2i 9890 . . . . 5  |-  ( 0  <  2  ->  (
( abs `  ( A  .ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) )  <->  ( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) ) )
7662, 75ax-mp 8 . . . 4  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) )  <->  ( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
7761, 76bitri 241 . . 3  |-  ( ( abs `  ( A 
.ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) )  <-> 
( 2  x.  ( abs `  ( A  .ih  B ) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
7852, 77sylibr 204 . 2  |-  ( -.  ( A  .ih  B
)  =  0  -> 
( abs `  ( A  .ih  B ) )  <_  ( ( normh `  A )  x.  ( normh `  B ) ) )
7914, 78pm2.61i 158 1  |-  ( abs `  ( A  .ih  B
) )  <_  (
( normh `  A )  x.  ( normh `  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    / cdiv 9633   2c2 10005   *ccj 11856   sqrcsqr 11993   abscabs 11994   ~Hchil 22375    .ih csp 22378   normhcno 22379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-hfvadd 22456  ax-hv0cl 22459  ax-hfvmul 22461  ax-hvmulass 22463  ax-hvmul0 22466  ax-hfi 22534  ax-his1 22537  ax-his2 22538  ax-his3 22539  ax-his4 22540
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-hnorm 22424  df-hvsub 22427
  Copyright terms: Public domain W3C validator