MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Unicode version

Theorem bddmulibl 19598
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl  |-  ( ( F  e. MblFn  /\  G  e.  L ^1  /\  E. x  e.  RR  A. y  e.  dom  F ( abs `  ( F `  y
) )  <_  x
)  ->  ( F  o F  x.  G
)  e.  L ^1 )
Distinct variable groups:    x, y, F    x, G, y

Proof of Theorem bddmulibl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mbff 19387 . . . . . . 7  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
21ad2antrr 707 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  F : dom  F --> CC )
3 ffn 5532 . . . . . 6  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
42, 3syl 16 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  F  Fn  dom  F )
5 iblmbf 19527 . . . . . . . 8  |-  ( G  e.  L ^1  ->  G  e. MblFn )
65ad2antlr 708 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  e. MblFn )
7 mbff 19387 . . . . . . 7  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
86, 7syl 16 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G : dom  G --> CC )
9 ffn 5532 . . . . . 6  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
108, 9syl 16 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  Fn  dom  G )
11 mbfdm 19388 . . . . . 6  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
1211ad2antrr 707 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  dom  F  e. 
dom  vol )
13 mbfdm 19388 . . . . . 6  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
146, 13syl 16 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  dom  G  e. 
dom  vol )
15 eqid 2388 . . . . 5  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
16 eqidd 2389 . . . . 5  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  dom  F )  ->  ( F `  z )  =  ( F `  z ) )
17 eqidd 2389 . . . . 5  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  dom  G )  ->  ( G `  z )  =  ( G `  z ) )
184, 10, 12, 14, 15, 16, 17offval 6252 . . . 4  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( F  o F  x.  G
)  =  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `  z
)  x.  ( G `
 z ) ) ) )
19 ovex 6046 . . . . . 6  |-  ( ( F `  z )  x.  ( G `  z ) )  e. 
_V
2019a1i 11 . . . . 5  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  z
)  x.  ( G `
 z ) )  e.  _V )
21 simpll 731 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  F  e. MblFn )
2221, 6mbfmul 19486 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( F  o F  x.  G
)  e. MblFn )
2318, 22eqeltrrd 2463 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) )  e. MblFn )
2423, 20mbfmptcl 19397 . . . . . . . 8  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  z
)  x.  ( G `
 z ) )  e.  CC )
25 eqidd 2389 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) )  =  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) ) )
26 absf 12069 . . . . . . . . . 10  |-  abs : CC
--> RR
2726a1i 11 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  abs : CC --> RR )
2827feqmptd 5719 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
29 fveq2 5669 . . . . . . . 8  |-  ( y  =  ( ( F `
 z )  x.  ( G `  z
) )  ->  ( abs `  y )  =  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) )
3024, 25, 28, 29fmptco 5841 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( abs  o.  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) ) )  =  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ) )
31 eqid 2388 . . . . . . . . 9  |-  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `  z
)  x.  ( G `
 z ) ) )  =  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `  z
)  x.  ( G `
 z ) ) )
3224, 31fmptd 5833 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) ) : ( dom  F  i^i  dom  G ) --> CC )
33 ax-resscn 8981 . . . . . . . . . . 11  |-  RR  C_  CC
34 ssid 3311 . . . . . . . . . . 11  |-  CC  C_  CC
35 cncfss 18801 . . . . . . . . . . 11  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
3633, 34, 35mp2an 654 . . . . . . . . . 10  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
37 abscncf 18803 . . . . . . . . . 10  |-  abs  e.  ( CC -cn-> RR )
3836, 37sselii 3289 . . . . . . . . 9  |-  abs  e.  ( CC -cn-> CC )
3938a1i 11 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  abs  e.  ( CC -cn-> CC ) )
40 cncombf 19418 . . . . . . . 8  |-  ( ( ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) )  e. MblFn  /\  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) ) : ( dom  F  i^i  dom 
G ) --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) ) )  e. MblFn )
4123, 32, 39, 40syl3anc 1184 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( abs  o.  ( z  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 z )  x.  ( G `  z
) ) ) )  e. MblFn )
4230, 41eqeltrrd 2463 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )  e. MblFn
)
4324abscld 12166 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e.  RR )
4443rexrd 9068 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e. 
RR* )
4524absge0d 12174 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) )
46 elxrge0 10941 . . . . . . . . . . 11  |-  ( ( abs `  ( ( F `  z )  x.  ( G `  z ) ) )  e.  ( 0 [,] 
+oo )  <->  ( ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e. 
RR*  /\  0  <_  ( abs `  ( ( F `  z )  x.  ( G `  z ) ) ) ) )
4744, 45, 46sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  e.  ( 0 [,]  +oo ) )
48 0xr 9065 . . . . . . . . . . . 12  |-  0  e.  RR*
49 0le0 10014 . . . . . . . . . . . 12  |-  0  <_  0
50 elxrge0 10941 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
5148, 49, 50mpbir2an 887 . . . . . . . . . . 11  |-  0  e.  ( 0 [,]  +oo )
5251a1i 11 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
0  e.  ( 0 [,]  +oo ) )
5347, 52ifclda 3710 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  e.  ( 0 [,] 
+oo ) )
5453adantr 452 . . . . . . . 8  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  RR )  ->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  e.  ( 0 [,] 
+oo ) )
55 eqid 2388 . . . . . . . 8  |-  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )
5654, 55fmptd 5833 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
57 reex 9015 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
5857a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  RR  e.  _V )
59 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  x  e.  RR )
6059ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  /\  z  e.  RR )  ->  x  e.  RR )
61 elin 3474 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( dom  F  i^i  dom  G )  <->  ( z  e.  dom  F  /\  z  e.  dom  G ) )
6261simprbi 451 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( dom  F  i^i  dom  G )  -> 
z  e.  dom  G
)
63 ffvelrn 5808 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : dom  G --> CC  /\  z  e.  dom  G )  ->  ( G `  z )  e.  CC )
648, 62, 63syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  z )  e.  CC )
6564abscld 12166 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( G `  z ) )  e.  RR )
6664absge0d 12174 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( abs `  ( G `  z )
) )
67 elrege0 10940 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  ( G `
 z ) )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  ( G `  z ) )  e.  RR  /\  0  <_ 
( abs `  ( G `  z )
) ) )
6865, 66, 67sylanbrc 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( G `  z ) )  e.  ( 0 [,)  +oo ) )
69 0re 9025 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
70 elrege0 10940 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
7169, 49, 70mpbir2an 887 . . . . . . . . . . . . . . . . 17  |-  0  e.  ( 0 [,)  +oo )
7271a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  z  e.  ( dom  F  i^i  dom 
G ) )  -> 
0  e.  ( 0 [,)  +oo ) )
7368, 72ifclda 3710 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 )  e.  ( 0 [,) 
+oo ) )
7473ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  /\  z  e.  RR )  ->  if ( z  e.  ( dom  F  i^i  dom 
G ) ,  ( abs `  ( G `
 z ) ) ,  0 )  e.  ( 0 [,)  +oo ) )
75 fconstmpt 4862 . . . . . . . . . . . . . . 15  |-  ( RR 
X.  { x }
)  =  ( z  e.  RR  |->  x )
7675a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( RR  X.  {
x } )  =  ( z  e.  RR  |->  x ) )
77 eqidd 2389 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )
7858, 60, 74, 76, 77offval2 6262 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( RR  X.  { x } )  o F  x.  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  =  ( z  e.  RR  |->  ( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) ) )
79 oveq2 6029 . . . . . . . . . . . . . . . 16  |-  ( if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 )  =  ( abs `  ( G `  z
) )  ->  (
x  x.  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )  =  ( x  x.  ( abs `  ( G `  z )
) ) )
80 oveq2 6029 . . . . . . . . . . . . . . . 16  |-  ( if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 )  =  0  -> 
( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) )  =  ( x  x.  0 ) )
8179, 80ifsb 3692 . . . . . . . . . . . . . . 15  |-  ( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )  =  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  ( x  x.  0 ) )
8259recnd 9048 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  x  e.  CC )
8382adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  x  e.  CC )
8483mul01d 9198 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( x  x.  0 )  =  0 )
8584ifeq2d 3698 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  ( x  x.  0 ) )  =  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
8681, 85syl5eq 2432 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) )  =  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
8786mpteq2dv 4238 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( z  e.  RR  |->  ( x  x.  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
8878, 87eqtrd 2420 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( RR  X.  { x } )  o F  x.  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
8988fveq2d 5673 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( ( RR  X.  { x } )  o F  x.  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) )  =  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )
9073adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  RR )  ->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 )  e.  ( 0 [,) 
+oo ) )
91 eqid 2388 . . . . . . . . . . . . . 14  |-  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) )
9290, 91fmptd 5833 . . . . . . . . . . . . 13  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
9392adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
94 inss2 3506 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
9594a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( dom  F  i^i  dom  G )  C_ 
dom  G )
9623, 20mbfdm2 19398 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( dom  F  i^i  dom  G )  e.  dom  vol )
978ffvelrnda 5810 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  dom  G )  ->  ( G `  z )  e.  CC )
988feqmptd 5719 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  =  ( z  e.  dom  G 
|->  ( G `  z
) ) )
99 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  G  e.  L ^1 )
10098, 99eqeltrrd 2463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  dom  G  |->  ( G `
 z ) )  e.  L ^1 )
10195, 96, 97, 100iblss 19564 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( G `
 z ) )  e.  L ^1 )
10264, 101iblabs 19588 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( G `  z
) ) )  e.  L ^1 )
10365, 66iblpos 19552 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  ( dom 
F  i^i  dom  G ) 
|->  ( abs `  ( G `  z )
) )  e.  L ^1 
<->  ( ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( G `  z
) ) )  e. MblFn  /\  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  e.  RR ) ) )
104102, 103mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  ( dom 
F  i^i  dom  G ) 
|->  ( abs `  ( G `  z )
) )  e. MblFn  /\  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) )  e.  RR ) )
105104simprd 450 . . . . . . . . . . . . 13  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z
) ) ,  0 ) ) )  e.  RR )
106105adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) )  e.  RR )
107 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  x  e.  RR )
108 neq0 3582 . . . . . . . . . . . . . . 15  |-  ( -.  ( dom  F  i^i  dom 
G )  =  (/)  <->  E. z  z  e.  ( dom  F  i^i  dom  G
) )
10969a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  e.  RR )
11061simplbi 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( dom  F  i^i  dom  G )  -> 
z  e.  dom  F
)
111 ffvelrn 5808 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
1122, 110, 111syl2an 464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  z )  e.  CC )
113112abscld 12166 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( F `  z ) )  e.  RR )
114 simplrl 737 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  x  e.  RR )
115112absge0d 12174 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( abs `  ( F `  z )
) )
116 simprr 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  A. y  e.  dom  F ( abs `  ( F `  y
) )  <_  x
)
117 fveq2 5669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
118117fveq2d 5673 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  ( abs `  ( F `  y ) )  =  ( abs `  ( F `  z )
) )
119118breq1d 4164 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  (
( abs `  ( F `  y )
)  <_  x  <->  ( abs `  ( F `  z
) )  <_  x
) )
120119rspccva 2995 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x  /\  z  e.  dom  F )  ->  ( abs `  ( F `  z )
)  <_  x )
121116, 110, 120syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( F `  z ) )  <_  x )
122109, 113, 114, 115, 121letrd 9160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  x )
123122ex 424 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  ->  0  <_  x ) )
124123exlimdv 1643 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( E. z  z  e.  ( dom  F  i^i  dom  G
)  ->  0  <_  x ) )
125108, 124syl5bi 209 . . . . . . . . . . . . . 14  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( -.  ( dom  F  i^i  dom  G )  =  (/)  ->  0  <_  x ) )
126125imp 419 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
0  <_  x )
127 elrege0 10940 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 [,) 
+oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
128107, 126, 127sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  ->  x  e.  ( 0 [,)  +oo ) )
12993, 106, 128itg2mulc 19507 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( ( RR  X.  { x } )  o F  x.  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) )  =  ( x  x.  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) ) )
13089, 129eqtr3d 2422 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  =  ( x  x.  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) ) )
131107, 106remulcld 9050 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( x  x.  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( G `  z )
) ,  0 ) ) ) )  e.  RR )
132130, 131eqeltrd 2462 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
133132ex 424 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( -.  ( dom  F  i^i  dom  G )  =  (/)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  e.  RR ) )
134 noel 3576 . . . . . . . . . . . . . 14  |-  -.  z  e.  (/)
135 eleq2 2449 . . . . . . . . . . . . . 14  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
z  e.  ( dom 
F  i^i  dom  G )  <-> 
z  e.  (/) ) )
136134, 135mtbiri 295 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  z  e.  ( dom  F  i^i  dom  G )
)
137 iffalse 3690 . . . . . . . . . . . . 13  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 )  =  0 )
138136, 137syl 16 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  =  0 )
139138mpteq2dv 4238 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )  =  ( z  e.  RR  |->  0 ) )
140 fconstmpt 4862 . . . . . . . . . . 11  |-  ( RR 
X.  { 0 } )  =  ( z  e.  RR  |->  0 )
141139, 140syl6eqr 2438 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )  =  ( RR  X.  { 0 } ) )
142141fveq2d 5673 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  =  ( S.2 `  ( RR  X.  {
0 } ) ) )
143 itg20 19497 . . . . . . . . . 10  |-  ( S.2 `  ( RR  X.  {
0 } ) )  =  0
144143, 69eqeltri 2458 . . . . . . . . 9  |-  ( S.2 `  ( RR  X.  {
0 } ) )  e.  RR
145142, 144syl6eqel 2476 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  e.  RR )
146133, 145pm2.61d2 154 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
147114, 65remulcld 9050 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
x  x.  ( abs `  ( G `  z
) ) )  e.  RR )
148147rexrd 9068 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
x  x.  ( abs `  ( G `  z
) ) )  e. 
RR* )
149114, 65, 122, 66mulge0d 9536 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  0  <_  ( x  x.  ( abs `  ( G `  z ) ) ) )
150 elxrge0 10941 . . . . . . . . . . . 12  |-  ( ( x  x.  ( abs `  ( G `  z
) ) )  e.  ( 0 [,]  +oo ) 
<->  ( ( x  x.  ( abs `  ( G `  z )
) )  e.  RR*  /\  0  <_  ( x  x.  ( abs `  ( G `  z )
) ) ) )
151148, 149, 150sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
x  x.  ( abs `  ( G `  z
) ) )  e.  ( 0 [,]  +oo ) )
152151, 52ifclda 3710 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  e.  ( 0 [,]  +oo ) )
153152adantr 452 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  RR )  ->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  e.  ( 0 [,]  +oo ) )
154 eqid 2388 . . . . . . . . 9  |-  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
155153, 154fmptd 5833 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
156112, 64absmuld 12184 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  =  ( ( abs `  ( F `  z )
)  x.  ( abs `  ( G `  z
) ) ) )
157 abscl 12011 . . . . . . . . . . . . . . . 16  |-  ( ( G `  z )  e.  CC  ->  ( abs `  ( G `  z ) )  e.  RR )
158 absge0 12020 . . . . . . . . . . . . . . . 16  |-  ( ( G `  z )  e.  CC  ->  0  <_  ( abs `  ( G `  z )
) )
159157, 158jca 519 . . . . . . . . . . . . . . 15  |-  ( ( G `  z )  e.  CC  ->  (
( abs `  ( G `  z )
)  e.  RR  /\  0  <_  ( abs `  ( G `  z )
) ) )
16064, 159syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( abs `  ( G `  z )
)  e.  RR  /\  0  <_  ( abs `  ( G `  z )
) ) )
161 lemul1a 9797 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  ( F `  z )
)  e.  RR  /\  x  e.  RR  /\  (
( abs `  ( G `  z )
)  e.  RR  /\  0  <_  ( abs `  ( G `  z )
) ) )  /\  ( abs `  ( F `
 z ) )  <_  x )  -> 
( ( abs `  ( F `  z )
)  x.  ( abs `  ( G `  z
) ) )  <_ 
( x  x.  ( abs `  ( G `  z ) ) ) )
162113, 114, 160, 121, 161syl31anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  (
( abs `  ( F `  z )
)  x.  ( abs `  ( G `  z
) ) )  <_ 
( x  x.  ( abs `  ( G `  z ) ) ) )
163156, 162eqbrtrd 4174 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  ( abs `  ( ( F `
 z )  x.  ( G `  z
) ) )  <_ 
( x  x.  ( abs `  ( G `  z ) ) ) )
164 iftrue 3689 . . . . . . . . . . . . 13  |-  ( z  e.  ( dom  F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  =  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )
165164adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  =  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )
166 iftrue 3689 . . . . . . . . . . . . 13  |-  ( z  e.  ( dom  F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  =  ( x  x.  ( abs `  ( G `  z )
) ) )
167166adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 )  =  ( x  x.  ( abs `  ( G `  z )
) ) )
168163, 165, 1673brtr4d 4184 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  z  e.  ( dom  F  i^i  dom  G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  <_  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
16949a1i 11 . . . . . . . . . . . . 13  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  0  <_  0
)
170 iffalse 3690 . . . . . . . . . . . . 13  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  =  0 )
171169, 170, 1373brtr4d 4184 . . . . . . . . . . . 12  |-  ( -.  z  e.  ( dom 
F  i^i  dom  G )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  <_  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )
172171adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  (
x  e.  RR  /\  A. y  e.  dom  F
( abs `  ( F `  y )
)  <_  x )
)  /\  -.  z  e.  ( dom  F  i^i  dom 
G ) )  ->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  <_  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) )
173168, 172pm2.61dan 767 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  <_  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )
174173ralrimivw 2734 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  A. z  e.  RR  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 )  <_  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )
17557a1i 11 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  RR  e.  _V )
176 eqidd 2389 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) ) )
177 eqidd 2389 . . . . . . . . . 10  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )  =  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )
178175, 54, 153, 176, 177ofrfval2 6263 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) )  o R  <_  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) )  <->  A. z  e.  RR  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 )  <_  if (
z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
179174, 178mpbird 224 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) ,  0 ) )  o R  <_ 
( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )
180 itg2le 19499 . . . . . . . 8  |-  ( ( ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) )  o R  <_  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  <_ 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )
18156, 155, 179, 180syl3anc 1184 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  <_ 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )
182 itg2lecl 19498 . . . . . . 7  |-  ( ( ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  <_ 
( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom 
F  i^i  dom  G ) ,  ( x  x.  ( abs `  ( G `  z )
) ) ,  0 ) ) ) )  ->  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
18356, 146, 181, 182syl3anc 1184 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( S.2 `  ( z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  e.  RR )
18443, 45iblpos 19552 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( (
z  e.  ( dom 
F  i^i  dom  G ) 
|->  ( abs `  (
( F `  z
)  x.  ( G `
 z ) ) ) )  e.  L ^1 
<->  ( ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )  e. MblFn  /\  ( S.2 `  (
z  e.  RR  |->  if ( z  e.  ( dom  F  i^i  dom  G ) ,  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) ,  0 ) ) )  e.  RR ) ) )
18542, 183, 184mpbir2and 889 . . . . 5  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( abs `  ( ( F `  z )  x.  ( G `  z )
) ) )  e.  L ^1 )
18620, 23, 185iblabsr 19589 . . . 4  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( z  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  z )  x.  ( G `  z ) ) )  e.  L ^1 )
18718, 186eqeltrd 2462 . . 3  |-  ( ( ( F  e. MblFn  /\  G  e.  L ^1 )  /\  ( x  e.  RR  /\ 
A. y  e.  dom  F ( abs `  ( F `  y )
)  <_  x )
)  ->  ( F  o F  x.  G
)  e.  L ^1 )
188187rexlimdvaa 2775 . 2  |-  ( ( F  e. MblFn  /\  G  e.  L ^1 )  -> 
( E. x  e.  RR  A. y  e. 
dom  F ( abs `  ( F `  y
) )  <_  x  ->  ( F  o F  x.  G )  e.  L ^1 ) )
1891883impia 1150 1  |-  ( ( F  e. MblFn  /\  G  e.  L ^1  /\  E. x  e.  RR  A. y  e.  dom  F ( abs `  ( F `  y
) )  <_  x
)  ->  ( F  o F  x.  G
)  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651   _Vcvv 2900    i^i cin 3263    C_ wss 3264   (/)c0 3572   ifcif 3683   {csn 3758   class class class wbr 4154    e. cmpt 4208    X. cxp 4817   dom cdm 4819    o. ccom 4823    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021    o Fcof 6243    o Rcofr 6244   CCcc 8922   RRcr 8923   0cc0 8924    x. cmul 8929    +oocpnf 9051   RR*cxr 9053    <_ cle 9055   [,)cico 10851   [,]cicc 10852   abscabs 11967   -cn->ccncf 18778   volcvol 19228  MblFncmbf 19374   S.2citg2 19376   L ^1cibl 19377
This theorem is referenced by:  bddibl  19599  itgsubstlem  19800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-ofr 6246  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-omul 6666  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-acn 7763  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cn 17214  df-cnp 17215  df-cmp 17373  df-tx 17516  df-hmeo 17709  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381  df-itg2 19382  df-ibl 19383  df-0p 19430
  Copyright terms: Public domain W3C validator