MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezout Structured version   Unicode version

Theorem bezout 13042
Description: Bézout's identity: For any integers  A and  B, there are integers  x ,  y such that  ( A  gcd  B )  =  A  x.  x  +  B  x.  y. (Contributed by Mario Carneiro, 22-Feb-2014.)
Assertion
Ref Expression
bezout  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem bezout
Dummy variables  t  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2442 . . . . . . . 8  |-  ( z  =  t  ->  (
z  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  t  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
212rexbidv 2748 . . . . . . 7  |-  ( z  =  t  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  t  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3 oveq2 6089 . . . . . . . . . 10  |-  ( x  =  u  ->  ( A  x.  x )  =  ( A  x.  u ) )
43oveq1d 6096 . . . . . . . . 9  |-  ( x  =  u  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  u )  +  ( B  x.  y
) ) )
54eqeq2d 2447 . . . . . . . 8  |-  ( x  =  u  ->  (
t  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  t  =  ( ( A  x.  u )  +  ( B  x.  y ) ) ) )
6 oveq2 6089 . . . . . . . . . 10  |-  ( y  =  v  ->  ( B  x.  y )  =  ( B  x.  v ) )
76oveq2d 6097 . . . . . . . . 9  |-  ( y  =  v  ->  (
( A  x.  u
)  +  ( B  x.  y ) )  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
87eqeq2d 2447 . . . . . . . 8  |-  ( y  =  v  ->  (
t  =  ( ( A  x.  u )  +  ( B  x.  y ) )  <->  t  =  ( ( A  x.  u )  +  ( B  x.  v ) ) ) )
95, 8cbvrex2v 2941 . . . . . . 7  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  t  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  t  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) )
102, 9syl6bb 253 . . . . . 6  |-  ( z  =  t  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  t  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) ) )
1110cbvrabv 2955 . . . . 5  |-  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) }  =  { t  e.  NN  |  E. u  e.  ZZ  E. v  e.  ZZ  t  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) }
12 simpll 731 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  A  e.  ZZ )
13 simplr 732 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  B  e.  ZZ )
14 eqid 2436 . . . . 5  |-  sup ( { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) ) } ,  RR ,  `'  <  )  =  sup ( { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x )  +  ( B  x.  y
) ) } ,  RR ,  `'  <  )
15 simpr 448 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
1611, 12, 13, 14, 15bezoutlem4 13041 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) } )
17 eqeq1 2442 . . . . . . 7  |-  ( z  =  ( A  gcd  B )  ->  ( z  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  ( A  gcd  B )  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
18172rexbidv 2748 . . . . . 6  |-  ( z  =  ( A  gcd  B )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
1918elrab 3092 . . . . 5  |-  ( ( A  gcd  B )  e.  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) }  <->  ( ( A  gcd  B )  e.  NN  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2019simprbi 451 . . . 4  |-  ( ( A  gcd  B )  e.  { z  e.  NN  |  E. x  e.  ZZ  E. y  e.  ZZ  z  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) }  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2116, 20syl 16 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2221ex 424 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  ( A  =  0  /\  B  =  0 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
23 0z 10293 . . . 4  |-  0  e.  ZZ
24 00id 9241 . . . . 5  |-  ( 0  +  0 )  =  0
25 0cn 9084 . . . . . . 7  |-  0  e.  CC
2625mul01i 9256 . . . . . 6  |-  ( 0  x.  0 )  =  0
2726, 26oveq12i 6093 . . . . 5  |-  ( ( 0  x.  0 )  +  ( 0  x.  0 ) )  =  ( 0  +  0 )
28 gcd0val 13009 . . . . 5  |-  ( 0  gcd  0 )  =  0
2924, 27, 283eqtr4ri 2467 . . . 4  |-  ( 0  gcd  0 )  =  ( ( 0  x.  0 )  +  ( 0  x.  0 ) )
30 oveq2 6089 . . . . . . 7  |-  ( x  =  0  ->  (
0  x.  x )  =  ( 0  x.  0 ) )
3130oveq1d 6096 . . . . . 6  |-  ( x  =  0  ->  (
( 0  x.  x
)  +  ( 0  x.  y ) )  =  ( ( 0  x.  0 )  +  ( 0  x.  y
) ) )
3231eqeq2d 2447 . . . . 5  |-  ( x  =  0  ->  (
( 0  gcd  0
)  =  ( ( 0  x.  x )  +  ( 0  x.  y ) )  <->  ( 0  gcd  0 )  =  ( ( 0  x.  0 )  +  ( 0  x.  y ) ) ) )
33 oveq2 6089 . . . . . . 7  |-  ( y  =  0  ->  (
0  x.  y )  =  ( 0  x.  0 ) )
3433oveq2d 6097 . . . . . 6  |-  ( y  =  0  ->  (
( 0  x.  0 )  +  ( 0  x.  y ) )  =  ( ( 0  x.  0 )  +  ( 0  x.  0 ) ) )
3534eqeq2d 2447 . . . . 5  |-  ( y  =  0  ->  (
( 0  gcd  0
)  =  ( ( 0  x.  0 )  +  ( 0  x.  y ) )  <->  ( 0  gcd  0 )  =  ( ( 0  x.  0 )  +  ( 0  x.  0 ) ) ) )
3632, 35rspc2ev 3060 . . . 4  |-  ( ( 0  e.  ZZ  /\  0  e.  ZZ  /\  (
0  gcd  0 )  =  ( ( 0  x.  0 )  +  ( 0  x.  0 ) ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  (
0  gcd  0 )  =  ( ( 0  x.  x )  +  ( 0  x.  y
) ) )
3723, 23, 29, 36mp3an 1279 . . 3  |-  E. x  e.  ZZ  E. y  e.  ZZ  ( 0  gcd  0 )  =  ( ( 0  x.  x
)  +  ( 0  x.  y ) )
38 oveq12 6090 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  gcd  B )  =  ( 0  gcd  0 ) )
39 oveq1 6088 . . . . . 6  |-  ( A  =  0  ->  ( A  x.  x )  =  ( 0  x.  x ) )
40 oveq1 6088 . . . . . 6  |-  ( B  =  0  ->  ( B  x.  y )  =  ( 0  x.  y ) )
4139, 40oveqan12d 6100 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  x.  x )  +  ( B  x.  y
) )  =  ( ( 0  x.  x
)  +  ( 0  x.  y ) ) )
4238, 41eqeq12d 2450 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  ( 0  gcd  0 )  =  ( ( 0  x.  x
)  +  ( 0  x.  y ) ) ) )
43422rexbidv 2748 . . 3  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( 0  gcd  0 )  =  ( ( 0  x.  x
)  +  ( 0  x.  y ) ) ) )
4437, 43mpbiri 225 . 2  |-  ( ( A  =  0  /\  B  =  0 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
4522, 44pm2.61d2 154 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   {crab 2709   `'ccnv 4877  (class class class)co 6081   supcsup 7445   RRcr 8989   0cc0 8990    + caddc 8993    x. cmul 8995    < clt 9120   NNcn 10000   ZZcz 10282    gcd cgcd 13006
This theorem is referenced by:  dvdsgcd  13043  dvdsmulgcd  13054  odbezout  15194  ablfacrp  15624  pgpfac1lem3  15635  znunit  16844  2sqb  21162  ostth3  21332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-dvds 12853  df-gcd 13007
  Copyright terms: Public domain W3C validator