Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bezoutr Unicode version

Theorem bezoutr 27083
Description: Partial converse to bezout 12723. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )

Proof of Theorem bezoutr
StepHypRef Expression
1 gcdcl 12698 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
21nn0zd 10117 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
32adantr 451 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
4 simpll 730 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  A  e.  ZZ )
5 simprl 732 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  X  e.  ZZ )
64, 5zmulcld 10125 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  x.  X
)  e.  ZZ )
7 simplr 731 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  B  e.  ZZ )
8 simprr 733 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  Y  e.  ZZ )
97, 8zmulcld 10125 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( B  x.  Y
)  e.  ZZ )
10 gcddvds 12696 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1110adantr 451 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1211simpld 445 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  A )
13 dvdsmultr1 12565 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  X  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  ->  ( A  gcd  B ) 
||  ( A  x.  X ) ) )
1413imp 418 . . 3  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  A  e.  ZZ  /\  X  e.  ZZ )  /\  ( A  gcd  B )  ||  A )  ->  ( A  gcd  B )  ||  ( A  x.  X
) )
153, 4, 5, 12, 14syl31anc 1185 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( A  x.  X ) )
1611simprd 449 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  B )
17 dvdsmultr1 12565 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ  /\  Y  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  ->  ( A  gcd  B ) 
||  ( B  x.  Y ) ) )
1817imp 418 . . 3  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  B  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  ||  ( B  x.  Y
) )
193, 7, 8, 16, 18syl31anc 1185 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( B  x.  Y ) )
20 dvds2add 12562 . . 3  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  x.  X
)  e.  ZZ  /\  ( B  x.  Y
)  e.  ZZ )  ->  ( ( ( A  gcd  B ) 
||  ( A  x.  X )  /\  ( A  gcd  B )  ||  ( B  x.  Y
) )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) ) )
2120imp 418 . 2  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  ( A  x.  X
)  e.  ZZ  /\  ( B  x.  Y
)  e.  ZZ )  /\  ( ( A  gcd  B )  ||  ( A  x.  X
)  /\  ( A  gcd  B )  ||  ( B  x.  Y )
) )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
223, 6, 9, 15, 19, 21syl32anc 1190 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1686   class class class wbr 4025  (class class class)co 5860    + caddc 8742    x. cmul 8744   ZZcz 10026    || cdivides 12533    gcd cgcd 12687
This theorem is referenced by:  bezoutr1  27084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-seq 11049  df-exp 11107  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-dvds 12534  df-gcd 12688
  Copyright terms: Public domain W3C validator