Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bezoutr Unicode version

Theorem bezoutr 26425
Description: Partial converse to bezout 12669. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )

Proof of Theorem bezoutr
StepHypRef Expression
1 gcdcl 12644 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
21nn0zd 10068 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
32adantr 453 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  e.  ZZ )
4 simpll 733 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  A  e.  ZZ )
5 simprl 735 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  X  e.  ZZ )
64, 5zmulcld 10076 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  x.  X
)  e.  ZZ )
7 simplr 734 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  B  e.  ZZ )
8 simprr 736 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  Y  e.  ZZ )
97, 8zmulcld 10076 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( B  x.  Y
)  e.  ZZ )
10 gcddvds 12642 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1110adantr 453 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1211simpld 447 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  A )
13 dvdsmultr1 12511 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  X  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  ->  ( A  gcd  B ) 
||  ( A  x.  X ) ) )
1413imp 420 . . 3  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  A  e.  ZZ  /\  X  e.  ZZ )  /\  ( A  gcd  B )  ||  A )  ->  ( A  gcd  B )  ||  ( A  x.  X
) )
153, 4, 5, 12, 14syl31anc 1190 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( A  x.  X ) )
1611simprd 451 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  B )
17 dvdsmultr1 12511 . . . 4  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ  /\  Y  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  ->  ( A  gcd  B ) 
||  ( B  x.  Y ) ) )
1817imp 420 . . 3  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  B  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  gcd  B )  ||  B )  ->  ( A  gcd  B )  ||  ( B  x.  Y
) )
193, 7, 8, 16, 18syl31anc 1190 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( B  x.  Y ) )
20 dvds2add 12508 . . 3  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  x.  X
)  e.  ZZ  /\  ( B  x.  Y
)  e.  ZZ )  ->  ( ( ( A  gcd  B ) 
||  ( A  x.  X )  /\  ( A  gcd  B )  ||  ( B  x.  Y
) )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) ) )
2120imp 420 . 2  |-  ( ( ( ( A  gcd  B )  e.  ZZ  /\  ( A  x.  X
)  e.  ZZ  /\  ( B  x.  Y
)  e.  ZZ )  /\  ( ( A  gcd  B )  ||  ( A  x.  X
)  /\  ( A  gcd  B )  ||  ( B  x.  Y )
) )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
223, 6, 9, 15, 19, 21syl32anc 1195 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    e. wcel 1621   class class class wbr 3983  (class class class)co 5778    + caddc 8694    x. cmul 8696   ZZcz 9977    || cdivides 12479    gcd cgcd 12633
This theorem is referenced by:  bezoutr1  26426
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-sup 7148  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-n0 9919  df-z 9978  df-uz 10184  df-rp 10308  df-seq 10999  df-exp 11057  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-divides 12480  df-gcd 12634
  Copyright terms: Public domain W3C validator