MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom Unicode version

Theorem binom 12283
Description: The binomial theorem:  ( A  +  B ) ^ N is the sum from  k  =  0 to  N of  ( N  _C  k )  x.  ( ( A ^
k )  x.  ( B ^ ( N  -  k ) ). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 12282. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
binom  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) )
Distinct variable groups:    A, k    B, k    k, N
Dummy variables  n  x are mutually distinct and distinct from all other variables.

Proof of Theorem binom
StepHypRef Expression
1 oveq2 5828 . . . . . 6  |-  ( x  =  0  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
0 ) )
2 oveq2 5828 . . . . . . 7  |-  ( x  =  0  ->  (
0 ... x )  =  ( 0 ... 0
) )
3 oveq1 5827 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  _C  k )  =  ( 0  _C  k ) )
4 oveq1 5827 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  -  k )  =  ( 0  -  k ) )
54oveq2d 5836 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
0  -  k ) ) )
65oveq1d 5835 . . . . . . . . 9  |-  ( x  =  0  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( 0  -  k ) )  x.  ( B ^ k
) ) )
73, 6oveq12d 5838 . . . . . . . 8  |-  ( x  =  0  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
87adantr 453 . . . . . . 7  |-  ( ( x  =  0  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( 0  _C  k )  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^ k
) ) ) )
92, 8sumeq12dv 12174 . . . . . 6  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... 0
) ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
101, 9eqeq12d 2299 . . . . 5  |-  ( x  =  0  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
0 )  =  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k
)  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^
k ) ) ) ) )
1110imbi2d 309 . . . 4  |-  ( x  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ 0 )  =  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
12 oveq2 5828 . . . . . 6  |-  ( x  =  n  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
n ) )
13 oveq2 5828 . . . . . . 7  |-  ( x  =  n  ->  (
0 ... x )  =  ( 0 ... n
) )
14 oveq1 5827 . . . . . . . . 9  |-  ( x  =  n  ->  (
x  _C  k )  =  ( n  _C  k ) )
15 oveq1 5827 . . . . . . . . . . 11  |-  ( x  =  n  ->  (
x  -  k )  =  ( n  -  k ) )
1615oveq2d 5836 . . . . . . . . . 10  |-  ( x  =  n  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
n  -  k ) ) )
1716oveq1d 5835 . . . . . . . . 9  |-  ( x  =  n  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( n  -  k ) )  x.  ( B ^ k
) ) )
1814, 17oveq12d 5838 . . . . . . . 8  |-  ( x  =  n  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( n  _C  k )  x.  ( ( A ^
( n  -  k
) )  x.  ( B ^ k ) ) ) )
1918adantr 453 . . . . . . 7  |-  ( ( x  =  n  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( n  _C  k )  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^ k
) ) ) )
2013, 19sumeq12dv 12174 . . . . . 6  |-  ( x  =  n  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( A ^
( n  -  k
) )  x.  ( B ^ k ) ) ) )
2112, 20eqeq12d 2299 . . . . 5  |-  ( x  =  n  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) ) ) )
2221imbi2d 309 . . . 4  |-  ( x  =  n  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
23 oveq2 5828 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^
( n  +  1 ) ) )
24 oveq2 5828 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  (
0 ... x )  =  ( 0 ... (
n  +  1 ) ) )
25 oveq1 5827 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
x  _C  k )  =  ( ( n  +  1 )  _C  k ) )
26 oveq1 5827 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
x  -  k )  =  ( ( n  +  1 )  -  k ) )
2726oveq2d 5836 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( A ^ ( x  -  k ) )  =  ( A ^ (
( n  +  1 )  -  k ) ) )
2827oveq1d 5835 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^ k
) ) )
2925, 28oveq12d 5838 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^
( ( n  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
3029adantr 453 . . . . . . 7  |-  ( ( x  =  ( n  +  1 )  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^ k
) ) ) )
3124, 30sumeq12dv 12174 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... (
n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  ( ( A ^
( ( n  + 
1 )  -  k
) )  x.  ( B ^ k ) ) ) )
3223, 31eqeq12d 2299 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^
( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( ( ( n  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^
k ) ) ) ) )
3332imbi2d 309 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
34 oveq2 5828 . . . . . 6  |-  ( x  =  N  ->  (
( A  +  B
) ^ x )  =  ( ( A  +  B ) ^ N ) )
35 oveq2 5828 . . . . . . 7  |-  ( x  =  N  ->  (
0 ... x )  =  ( 0 ... N
) )
36 oveq1 5827 . . . . . . . . 9  |-  ( x  =  N  ->  (
x  _C  k )  =  ( N  _C  k ) )
37 oveq1 5827 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
x  -  k )  =  ( N  -  k ) )
3837oveq2d 5836 . . . . . . . . . 10  |-  ( x  =  N  ->  ( A ^ ( x  -  k ) )  =  ( A ^ ( N  -  k )
) )
3938oveq1d 5835 . . . . . . . . 9  |-  ( x  =  N  ->  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) ) )
4036, 39oveq12d 5838 . . . . . . . 8  |-  ( x  =  N  ->  (
( x  _C  k
)  x.  ( ( A ^ ( x  -  k ) )  x.  ( B ^
k ) ) )  =  ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
4140adantr 453 . . . . . . 7  |-  ( ( x  =  N  /\  k  e.  ( 0 ... x ) )  ->  ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  ( ( N  _C  k )  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^ k
) ) ) )
4235, 41sumeq12dv 12174 . . . . . 6  |-  ( x  =  N  ->  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) )
4334, 42eqeq12d 2299 . . . . 5  |-  ( x  =  N  ->  (
( ( A  +  B ) ^ x
)  =  sum_ k  e.  ( 0 ... x
) ( ( x  _C  k )  x.  ( ( A ^
( x  -  k
) )  x.  ( B ^ k ) ) )  <->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) ) ) )
4443imbi2d 309 . . . 4  |-  ( x  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ x )  =  sum_ k  e.  ( 0 ... x ) ( ( x  _C  k )  x.  (
( A ^ (
x  -  k ) )  x.  ( B ^ k ) ) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) ) ) )
45 exp0 11103 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
46 exp0 11103 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
4745, 46oveqan12d 5839 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  ( 1  x.  1 ) )
48 1t1e1 9866 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
4947, 48syl6eq 2333 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  1 )
5049oveq2d 5836 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  =  ( 1  x.  1 ) )
5150, 48syl6eq 2333 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  =  1 )
52 0z 10031 . . . . . 6  |-  0  e.  ZZ
53 ax-1cn 8791 . . . . . . 7  |-  1  e.  CC
5451, 53syl6eqel 2373 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  e.  CC )
55 oveq2 5828 . . . . . . . . 9  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
56 0nn0 9976 . . . . . . . . . 10  |-  0  e.  NN0
57 bcn0 11318 . . . . . . . . . 10  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
5856, 57ax-mp 10 . . . . . . . . 9  |-  ( 0  _C  0 )  =  1
5955, 58syl6eq 2333 . . . . . . . 8  |-  ( k  =  0  ->  (
0  _C  k )  =  1 )
60 oveq2 5828 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
0  -  k )  =  ( 0  -  0 ) )
61 0cn 8827 . . . . . . . . . . . 12  |-  0  e.  CC
6261subidi 9113 . . . . . . . . . . 11  |-  ( 0  -  0 )  =  0
6360, 62syl6eq 2333 . . . . . . . . . 10  |-  ( k  =  0  ->  (
0  -  k )  =  0 )
6463oveq2d 5836 . . . . . . . . 9  |-  ( k  =  0  ->  ( A ^ ( 0  -  k ) )  =  ( A ^ 0 ) )
65 oveq2 5828 . . . . . . . . 9  |-  ( k  =  0  ->  ( B ^ k )  =  ( B ^ 0 ) )
6664, 65oveq12d 5838 . . . . . . . 8  |-  ( k  =  0  ->  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) )
6759, 66oveq12d 5838 . . . . . . 7  |-  ( k  =  0  ->  (
( 0  _C  k
)  x.  ( ( A ^ ( 0  -  k ) )  x.  ( B ^
k ) ) )  =  ( 1  x.  ( ( A ^
0 )  x.  ( B ^ 0 ) ) ) )
6867fsum1 12209 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( A ^ 0 )  x.  ( B ^ 0 ) ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) )  =  ( 1  x.  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) )
6952, 54, 68sylancr 646 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
sum_ k  e.  ( 0 ... 0 ) ( ( 0  _C  k )  x.  (
( A ^ (
0  -  k ) )  x.  ( B ^ k ) ) )  =  ( 1  x.  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) )
70 addcl 8815 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
7170exp0d 11234 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 0 )  =  1 )
7251, 69, 713eqtr4rd 2328 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 0 )  =  sum_ k  e.  ( 0 ... 0
) ( ( 0  _C  k )  x.  ( ( A ^
( 0  -  k
) )  x.  ( B ^ k ) ) ) )
73 simprl 734 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  A  e.  CC )
74 simprr 735 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  B  e.  CC )
75 simpl 445 . . . . . . 7  |-  ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  ->  n  e.  NN0 )
76 id 21 . . . . . . 7  |-  ( ( ( A  +  B
) ^ n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) )  ->  ( ( A  +  B ) ^ n )  = 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) )
7773, 74, 75, 76binomlem 12282 . . . . . 6  |-  ( ( ( n  e.  NN0  /\  ( A  e.  CC  /\  B  e.  CC ) )  /\  ( ( A  +  B ) ^ n )  = 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( A ^ (
n  -  k ) )  x.  ( B ^ k ) ) ) )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) )
7877exp31 589 . . . . 5  |-  ( n  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) )  ->  ( ( A  +  B ) ^
( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  + 
1 ) ) ( ( ( n  + 
1 )  _C  k
)  x.  ( ( A ^ ( ( n  +  1 )  -  k ) )  x.  ( B ^
k ) ) ) ) ) )
7978a2d 25 . . . 4  |-  ( n  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^
n )  =  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k
)  x.  ( ( A ^ ( n  -  k ) )  x.  ( B ^
k ) ) ) )  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  +  B
) ^ ( n  +  1 ) )  =  sum_ k  e.  ( 0 ... ( n  +  1 ) ) ( ( ( n  +  1 )  _C  k )  x.  (
( A ^ (
( n  +  1 )  -  k ) )  x.  ( B ^ k ) ) ) ) ) )
8011, 22, 33, 44, 72, 79nn0ind 10104 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A ^
( N  -  k
) )  x.  ( B ^ k ) ) ) ) )
8180impcom 421 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
k ) ) ) )
82813impa 1148 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( A ^ ( N  -  k )
)  x.  ( B ^ k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685  (class class class)co 5820   CCcc 8731   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    - cmin 9033   NN0cn0 9961   ZZcz 10020   ...cfz 10777   ^cexp 11099    _C cbc 11310   sum_csu 12153
This theorem is referenced by:  binom1p  12284  efaddlem  12369  basellem3  20315  jm2.22  26488
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-fz 10778  df-fzo 10866  df-seq 11042  df-exp 11100  df-fac 11284  df-bc 11311  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-sum 12154
  Copyright terms: Public domain W3C validator