MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Unicode version

Theorem bitru 1336
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1  |-  ph
Assertion
Ref Expression
bitru  |-  ( ph  <->  T.  )

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2  |-  ph
2 tru 1331 . 2  |-  T.
31, 22th 232 1  |-  ( ph  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    T. wtru 1326
This theorem is referenced by:  truorfal  1351  falortru  1352  truimtru  1354  falimtru  1356  falimfal  1357  notfal  1359  trubitru  1360  falbifal  1363  0frgp  15449  astbstanbst  27965  dandysum2p2e4  28031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-tru 1329
  Copyright terms: Public domain W3C validator