MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1o Structured version   Unicode version

Theorem bitsp1o 12937
Description: The  M  +  1-th bit of  2 N  +  1 is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 10304 . . . . . 6  |-  2  e.  ZZ
21a1i 11 . . . . 5  |-  ( N  e.  ZZ  ->  2  e.  ZZ )
3 id 20 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  ZZ )
42, 3zmulcld 10373 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  ZZ )
54peano2zd 10370 . . 3  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  +  1 )  e.  ZZ )
6 bitsp1 12935 . . 3  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) ) ) )
75, 6sylan 458 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) ) ) )
8 2re 10061 . . . . . . . . . . . 12  |-  2  e.  RR
98a1i 11 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  2  e.  RR )
10 zre 10278 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  RR )
119, 10remulcld 9108 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  RR )
1211recnd 9106 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
2  x.  N )  e.  CC )
13 ax-1cn 9040 . . . . . . . . . 10  |-  1  e.  CC
1413a1i 11 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  1  e.  CC )
15 2cn 10062 . . . . . . . . . 10  |-  2  e.  CC
1615a1i 11 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  e.  CC )
17 2ne0 10075 . . . . . . . . . 10  |-  2  =/=  0
1817a1i 11 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  2  =/=  0 )
1912, 14, 16, 18divdird 9820 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( ( 2  x.  N )  /  2 )  +  ( 1  /  2
) ) )
20 zcn 10279 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
2120, 16, 18divcan3d 9787 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( 2  x.  N
)  /  2 )  =  N )
2221oveq1d 6088 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  /  2
)  +  ( 1  /  2 ) )  =  ( N  +  ( 1  /  2
) ) )
2319, 22eqtrd 2467 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( N  +  ( 1  /  2
) ) )
2423fveq2d 5724 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )  =  ( |_ `  ( N  +  ( 1  /  2 ) ) ) )
25 0re 9083 . . . . . . . . 9  |-  0  e.  RR
268, 17rereccli 9771 . . . . . . . . 9  |-  ( 1  /  2 )  e.  RR
27 halfgt0 10180 . . . . . . . . 9  |-  0  <  ( 1  /  2
)
2825, 26, 27ltleii 9188 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
29 halflt1 10181 . . . . . . . 8  |-  ( 1  /  2 )  <  1
3028, 29pm3.2i 442 . . . . . . 7  |-  ( 0  <_  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
31 flbi2 11216 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( 1  /  2
)  e.  RR )  ->  ( ( |_
`  ( N  +  ( 1  /  2
) ) )  =  N  <->  ( 0  <_ 
( 1  /  2
)  /\  ( 1  /  2 )  <  1 ) ) )
3226, 31mpan2 653 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  +  ( 1  /  2 ) ) )  =  N  <->  ( 0  <_  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 ) ) )
3330, 32mpbiri 225 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  +  ( 1  /  2
) ) )  =  N )
3424, 33eqtrd 2467 . . . . 5  |-  ( N  e.  ZZ  ->  ( |_ `  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )  =  N )
3534adantr 452 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( |_ `  (
( ( 2  x.  N )  +  1 )  /  2 ) )  =  N )
3635fveq2d 5724 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
(bits `  ( |_ `  ( ( ( 2  x.  N )  +  1 )  /  2
) ) )  =  (bits `  N )
)
3736eleq2d 2502 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( M  e.  (bits `  ( |_ `  (
( ( 2  x.  N )  +  1 )  /  2 ) ) )  <->  M  e.  (bits `  N ) ) )
387, 37bitrd 245 1  |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( M  + 
1 )  e.  (bits `  ( ( 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    / cdiv 9669   2c2 10041   NN0cn0 10213   ZZcz 10274   |_cfl 11193  bitscbits 12923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-fl 11194  df-seq 11316  df-exp 11375  df-bits 12926
  Copyright terms: Public domain W3C validator