MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Unicode version

Theorem blocni 21376
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8  |-  C  =  ( IndMet `  U )
blocni.d  |-  D  =  ( IndMet `  W )
blocni.j  |-  J  =  ( MetOpen `  C )
blocni.k  |-  K  =  ( MetOpen `  D )
blocni.4  |-  L  =  ( U  LnOp  W
)
blocni.5  |-  B  =  ( U  BLnOp  W )
blocni.u  |-  U  e.  NrmCVec
blocni.w  |-  W  e.  NrmCVec
blocni.l  |-  T  e.  L
Assertion
Ref Expression
blocni  |-  ( T  e.  ( J  Cn  K )  <->  T  e.  B )
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem blocni
StepHypRef Expression
1 blocni.u . . . 4  |-  U  e.  NrmCVec
2 eqid 2285 . . . . 5  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
3 eqid 2285 . . . . 5  |-  ( 0vec `  U )  =  (
0vec `  U )
42, 3nvzcl 21185 . . . 4  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  ( BaseSet `  U ) )
51, 4ax-mp 10 . . 3  |-  ( 0vec `  U )  e.  (
BaseSet `  U )
6 blocni.8 . . . . . . . . . 10  |-  C  =  ( IndMet `  U )
72, 6imsmet 21253 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  ( BaseSet `  U ) ) )
81, 7ax-mp 10 . . . . . . . 8  |-  C  e.  ( Met `  ( BaseSet
`  U ) )
9 metxmet 17894 . . . . . . . 8  |-  ( C  e.  ( Met `  ( BaseSet
`  U ) )  ->  C  e.  ( * Met `  ( BaseSet
`  U ) ) )
108, 9ax-mp 10 . . . . . . 7  |-  C  e.  ( * Met `  ( BaseSet
`  U ) )
11 blocni.j . . . . . . . 8  |-  J  =  ( MetOpen `  C )
1211mopntopon 17980 . . . . . . 7  |-  ( C  e.  ( * Met `  ( BaseSet `  U )
)  ->  J  e.  (TopOn `  ( BaseSet `  U
) ) )
1310, 12ax-mp 10 . . . . . 6  |-  J  e.  (TopOn `  ( BaseSet `  U
) )
1413toponunii 16665 . . . . 5  |-  ( BaseSet `  U )  =  U. J
1514cncnpi 17002 . . . 4  |-  ( ( T  e.  ( J  Cn  K )  /\  ( 0vec `  U )  e.  ( BaseSet `  U )
)  ->  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )
165, 15mpan2 654 . . 3  |-  ( T  e.  ( J  Cn  K )  ->  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )
17 blocni.d . . . 4  |-  D  =  ( IndMet `  W )
18 blocni.k . . . 4  |-  K  =  ( MetOpen `  D )
19 blocni.4 . . . 4  |-  L  =  ( U  LnOp  W
)
20 blocni.5 . . . 4  |-  B  =  ( U  BLnOp  W )
21 blocni.w . . . 4  |-  W  e.  NrmCVec
22 blocni.l . . . 4  |-  T  e.  L
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 21375 . . 3  |-  ( ( ( 0vec `  U
)  e.  ( BaseSet `  U )  /\  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )  ->  T  e.  B
)
245, 16, 23sylancr 646 . 2  |-  ( T  e.  ( J  Cn  K )  ->  T  e.  B )
25 eleq1 2345 . . 3  |-  ( T  =  ( U  0op  W )  ->  ( T  e.  ( J  Cn  K
)  <->  ( U  0op  W )  e.  ( J  Cn  K ) ) )
26 simprr 735 . . . . . . . 8  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  y  e.  RR+ )
27 eqid 2285 . . . . . . . . . . . . 13  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
28 eqid 2285 . . . . . . . . . . . . 13  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
292, 27, 28, 20nmblore 21357 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  (
( U normOp OLD W
) `  T )  e.  RR )
301, 21, 29mp3an12 1269 . . . . . . . . . . 11  |-  ( T  e.  B  ->  (
( U normOp OLD W
) `  T )  e.  RR )
31 eqid 2285 . . . . . . . . . . . . . 14  |-  ( U  0op  W )  =  ( U  0op  W
)
3228, 31, 19nmlnogt0 21368 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =/=  ( U  0op  W )  <->  0  <  (
( U normOp OLD W
) `  T )
) )
331, 21, 22, 32mp3an 1279 . . . . . . . . . . . 12  |-  ( T  =/=  ( U  0op  W )  <->  0  <  (
( U normOp OLD W
) `  T )
)
3433biimpi 188 . . . . . . . . . . 11  |-  ( T  =/=  ( U  0op  W )  ->  0  <  ( ( U normOp OLD W
) `  T )
)
3530, 34anim12i 551 . . . . . . . . . 10  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  (
( ( U normOp OLD W ) `  T
)  e.  RR  /\  0  <  ( ( U
normOp OLD W ) `  T ) ) )
36 elrp 10352 . . . . . . . . . 10  |-  ( ( ( U normOp OLD W
) `  T )  e.  RR+  <->  ( ( ( U normOp OLD W ) `  T )  e.  RR  /\  0  <  ( ( U normOp OLD W ) `  T ) ) )
3735, 36sylibr 205 . . . . . . . . 9  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  (
( U normOp OLD W
) `  T )  e.  RR+ )
3837adantr 453 . . . . . . . 8  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( ( U normOp OLD W ) `  T )  e.  RR+ )
3926, 38rpdivcld 10403 . . . . . . 7  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( y  /  ( ( U
normOp OLD W ) `  T ) )  e.  RR+ )
40 simprl 734 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  x  e.  ( BaseSet `  U )
)
41 metcl 17892 . . . . . . . . . . . 12  |-  ( ( C  e.  ( Met `  ( BaseSet `  U )
)  /\  x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet
`  U ) )  ->  ( x C w )  e.  RR )
428, 41mp3an1 1266 . . . . . . . . . . 11  |-  ( ( x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( x C w )  e.  RR )
4340, 42sylan 459 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( x C w )  e.  RR )
44 simplrr 739 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
y  e.  RR+ )
4544rpred 10386 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
y  e.  RR )
4635ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( U
normOp OLD W ) `  T )  e.  RR  /\  0  <  ( ( U normOp OLD W ) `  T ) ) )
47 ltmuldiv2 9623 . . . . . . . . . 10  |-  ( ( ( x C w )  e.  RR  /\  y  e.  RR  /\  (
( ( U normOp OLD W ) `  T
)  e.  RR  /\  0  <  ( ( U
normOp OLD W ) `  T ) ) )  ->  ( ( ( ( U normOp OLD W
) `  T )  x.  ( x C w ) )  <  y  <->  ( x C w )  <  ( y  / 
( ( U normOp OLD W ) `  T
) ) ) )
4843, 45, 46, 47syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  <  y  <->  ( x C w )  < 
( y  /  (
( U normOp OLD W
) `  T )
) ) )
49 id 21 . . . . . . . . . . . 12  |-  ( ( T  e.  B  /\  x  e.  ( BaseSet `  U ) )  -> 
( T  e.  B  /\  x  e.  ( BaseSet
`  U ) ) )
5049ad2ant2r 729 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( T  e.  B  /\  x  e.  ( BaseSet `  U )
) )
512, 27, 6, 17, 28, 20, 1, 21blometi 21374 . . . . . . . . . . . 12  |-  ( ( T  e.  B  /\  x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) ) )
52513expa 1153 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  x  e.  ( BaseSet
`  U ) )  /\  w  e.  (
BaseSet `  U ) )  ->  ( ( T `
 x ) D ( T `  w
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( x C w ) ) )
5350, 52sylan 459 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( T `  x ) D ( T `  w ) )  <_  ( (
( U normOp OLD W
) `  T )  x.  ( x C w ) ) )
542, 27, 19lnof 21326 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : ( BaseSet `  U
) --> ( BaseSet `  W
) )
551, 21, 22, 54mp3an 1279 . . . . . . . . . . . . . 14  |-  T :
( BaseSet `  U ) --> ( BaseSet `  W )
5655ffvelrni 5626 . . . . . . . . . . . . 13  |-  ( x  e.  ( BaseSet `  U
)  ->  ( T `  x )  e.  (
BaseSet `  W ) )
5755ffvelrni 5626 . . . . . . . . . . . . 13  |-  ( w  e.  ( BaseSet `  U
)  ->  ( T `  w )  e.  (
BaseSet `  W ) )
5827, 17imsmet 21253 . . . . . . . . . . . . . . 15  |-  ( W  e.  NrmCVec  ->  D  e.  ( Met `  ( BaseSet `  W ) ) )
5921, 58ax-mp 10 . . . . . . . . . . . . . 14  |-  D  e.  ( Met `  ( BaseSet
`  W ) )
60 metcl 17892 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  ( BaseSet `  W )
)  /\  ( T `  x )  e.  (
BaseSet `  W )  /\  ( T `  w )  e.  ( BaseSet `  W
) )  ->  (
( T `  x
) D ( T `
 w ) )  e.  RR )
6159, 60mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( ( T `  x
)  e.  ( BaseSet `  W )  /\  ( T `  w )  e.  ( BaseSet `  W )
)  ->  ( ( T `  x ) D ( T `  w ) )  e.  RR )
6256, 57, 61syl2an 465 . . . . . . . . . . . 12  |-  ( ( x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( ( T `  x ) D ( T `  w ) )  e.  RR )
6340, 62sylan 459 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( T `  x ) D ( T `  w ) )  e.  RR )
64 remulcl 8818 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U normOp OLD W ) `  T
)  e.  RR  /\  ( x C w )  e.  RR )  ->  ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6530, 42, 64syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( T  e.  B  /\  ( x  e.  ( BaseSet
`  U )  /\  w  e.  ( BaseSet `  U ) ) )  ->  ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6665anassrs 631 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  B  /\  x  e.  ( BaseSet
`  U ) )  /\  w  e.  (
BaseSet `  U ) )  ->  ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6766adantllr 701 . . . . . . . . . . . 12  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  x  e.  ( BaseSet `  U )
)  /\  w  e.  ( BaseSet `  U )
)  ->  ( (
( U normOp OLD W
) `  T )  x.  ( x C w ) )  e.  RR )
6867adantlrr 703 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
69 lelttr 8908 . . . . . . . . . . 11  |-  ( ( ( ( T `  x ) D ( T `  w ) )  e.  RR  /\  ( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  /\  ( ( ( U normOp OLD W
) `  T )  x.  ( x C w ) )  <  y
)  ->  ( ( T `  x ) D ( T `  w ) )  < 
y ) )
7063, 68, 45, 69syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  /\  ( ( ( U normOp OLD W
) `  T )  x.  ( x C w ) )  <  y
)  ->  ( ( T `  x ) D ( T `  w ) )  < 
y ) )
7153, 70mpand 658 . . . . . . . . 9  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  <  y  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
7248, 71sylbird 228 . . . . . . . 8  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( x C w )  <  (
y  /  ( ( U normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
7372ralrimiva 2628 . . . . . . 7  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  (
y  /  ( ( U normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
74 breq2 4029 . . . . . . . . . 10  |-  ( z  =  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  (
( x C w )  <  z  <->  ( x C w )  < 
( y  /  (
( U normOp OLD W
) `  T )
) ) )
7574imbi1d 310 . . . . . . . . 9  |-  ( z  =  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  (
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y )  <-> 
( ( x C w )  <  (
y  /  ( ( U normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) )
7675ralbidv 2565 . . . . . . . 8  |-  ( z  =  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  ( A. w  e.  ( BaseSet
`  U ) ( ( x C w )  <  z  -> 
( ( T `  x ) D ( T `  w ) )  <  y )  <->  A. w  e.  ( BaseSet
`  U ) ( ( x C w )  <  ( y  /  ( ( U
normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) )
7776rspcev 2886 . . . . . . 7  |-  ( ( ( y  /  (
( U normOp OLD W
) `  T )
)  e.  RR+  /\  A. w  e.  ( BaseSet `  U ) ( ( x C w )  <  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  (
( T `  x
) D ( T `
 w ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  ( BaseSet `  U ) ( ( x C w )  <  z  ->  (
( T `  x
) D ( T `
 w ) )  <  y ) )
7839, 73, 77syl2anc 644 . . . . . 6  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) )
7978ralrimivva 2637 . . . . 5  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) )
8079, 55jctil 525 . . . 4  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  ( T : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) ) )
81 metxmet 17894 . . . . . 6  |-  ( D  e.  ( Met `  ( BaseSet
`  W ) )  ->  D  e.  ( * Met `  ( BaseSet
`  W ) ) )
8259, 81ax-mp 10 . . . . 5  |-  D  e.  ( * Met `  ( BaseSet
`  W ) )
8311, 18metcn 18084 . . . . 5  |-  ( ( C  e.  ( * Met `  ( BaseSet `  U ) )  /\  D  e.  ( * Met `  ( BaseSet `  W
) ) )  -> 
( T  e.  ( J  Cn  K )  <-> 
( T : (
BaseSet `  U ) --> (
BaseSet `  W )  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  (
BaseSet `  U ) ( ( x C w )  <  z  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) ) )
8410, 82, 83mp2an 655 . . . 4  |-  ( T  e.  ( J  Cn  K )  <->  ( T : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) ) )
8580, 84sylibr 205 . . 3  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  T  e.  ( J  Cn  K
) )
86 eqid 2285 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
872, 86, 310ofval 21358 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U  0op  W )  =  ( ( BaseSet `  U
)  X.  { (
0vec `  W ) } ) )
881, 21, 87mp2an 655 . . . . 5  |-  ( U  0op  W )  =  ( ( BaseSet `  U
)  X.  { (
0vec `  W ) } )
8918mopntopon 17980 . . . . . . 7  |-  ( D  e.  ( * Met `  ( BaseSet `  W )
)  ->  K  e.  (TopOn `  ( BaseSet `  W
) ) )
9082, 89ax-mp 10 . . . . . 6  |-  K  e.  (TopOn `  ( BaseSet `  W
) )
9127, 86nvzcl 21185 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
9221, 91ax-mp 10 . . . . . 6  |-  ( 0vec `  W )  e.  (
BaseSet `  W )
93 cnconst2 17006 . . . . . 6  |-  ( ( J  e.  (TopOn `  ( BaseSet `  U )
)  /\  K  e.  (TopOn `  ( BaseSet `  W
) )  /\  ( 0vec `  W )  e.  ( BaseSet `  W )
)  ->  ( ( BaseSet
`  U )  X. 
{ ( 0vec `  W
) } )  e.  ( J  Cn  K
) )
9413, 90, 92, 93mp3an 1279 . . . . 5  |-  ( (
BaseSet `  U )  X. 
{ ( 0vec `  W
) } )  e.  ( J  Cn  K
)
9588, 94eqeltri 2355 . . . 4  |-  ( U  0op  W )  e.  ( J  Cn  K
)
9695a1i 12 . . 3  |-  ( T  e.  B  ->  ( U  0op  W )  e.  ( J  Cn  K
) )
9725, 85, 96pm2.61ne 2523 . 2  |-  ( T  e.  B  ->  T  e.  ( J  Cn  K
) )
9824, 97impbii 182 1  |-  ( T  e.  ( J  Cn  K )  <->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   E.wrex 2546   {csn 3642   class class class wbr 4025    X. cxp 4687   -->wf 5218   ` cfv 5222  (class class class)co 5820   RRcr 8732   0cc0 8733    x. cmul 8738    < clt 8863    <_ cle 8864    / cdiv 9419   RR+crp 10350   * Metcxmt 16364   Metcme 16365   MetOpencmopn 16367  TopOnctopon 16627    Cn ccn 16949    CnP ccnp 16950   NrmCVeccnv 21133   BaseSetcba 21135   0veccn0v 21137   IndMetcims 21140    LnOp clno 21311   normOp OLDcnmoo 21312    BLnOp cblo 21313    0op c0o 21314
This theorem is referenced by:  lnocni  21377  blocn  21378
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-seq 11042  df-exp 11100  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-topgen 13339  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-top 16631  df-bases 16633  df-topon 16634  df-cn 16952  df-cnp 16953  df-grpo 20851  df-gid 20852  df-ginv 20853  df-gdiv 20854  df-ablo 20942  df-vc 21095  df-nv 21141  df-va 21144  df-ba 21145  df-sm 21146  df-0v 21147  df-vs 21148  df-nmcv 21149  df-ims 21150  df-lno 21315  df-nmoo 21316  df-blo 21317  df-0o 21318
  Copyright terms: Public domain W3C validator