MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Unicode version

Theorem blocni 22306
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8  |-  C  =  ( IndMet `  U )
blocni.d  |-  D  =  ( IndMet `  W )
blocni.j  |-  J  =  ( MetOpen `  C )
blocni.k  |-  K  =  ( MetOpen `  D )
blocni.4  |-  L  =  ( U  LnOp  W
)
blocni.5  |-  B  =  ( U  BLnOp  W )
blocni.u  |-  U  e.  NrmCVec
blocni.w  |-  W  e.  NrmCVec
blocni.l  |-  T  e.  L
Assertion
Ref Expression
blocni  |-  ( T  e.  ( J  Cn  K )  <->  T  e.  B )

Proof of Theorem blocni
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4  |-  U  e.  NrmCVec
2 eqid 2436 . . . . 5  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
3 eqid 2436 . . . . 5  |-  ( 0vec `  U )  =  (
0vec `  U )
42, 3nvzcl 22115 . . . 4  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  ( BaseSet `  U ) )
51, 4ax-mp 8 . . 3  |-  ( 0vec `  U )  e.  (
BaseSet `  U )
6 blocni.8 . . . . . . . . . 10  |-  C  =  ( IndMet `  U )
72, 6imsmet 22183 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  ( BaseSet `  U ) ) )
81, 7ax-mp 8 . . . . . . . 8  |-  C  e.  ( Met `  ( BaseSet
`  U ) )
9 metxmet 18364 . . . . . . . 8  |-  ( C  e.  ( Met `  ( BaseSet
`  U ) )  ->  C  e.  ( * Met `  ( BaseSet
`  U ) ) )
108, 9ax-mp 8 . . . . . . 7  |-  C  e.  ( * Met `  ( BaseSet
`  U ) )
11 blocni.j . . . . . . . 8  |-  J  =  ( MetOpen `  C )
1211mopntopon 18469 . . . . . . 7  |-  ( C  e.  ( * Met `  ( BaseSet `  U )
)  ->  J  e.  (TopOn `  ( BaseSet `  U
) ) )
1310, 12ax-mp 8 . . . . . 6  |-  J  e.  (TopOn `  ( BaseSet `  U
) )
1413toponunii 16997 . . . . 5  |-  ( BaseSet `  U )  =  U. J
1514cncnpi 17342 . . . 4  |-  ( ( T  e.  ( J  Cn  K )  /\  ( 0vec `  U )  e.  ( BaseSet `  U )
)  ->  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )
165, 15mpan2 653 . . 3  |-  ( T  e.  ( J  Cn  K )  ->  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )
17 blocni.d . . . 4  |-  D  =  ( IndMet `  W )
18 blocni.k . . . 4  |-  K  =  ( MetOpen `  D )
19 blocni.4 . . . 4  |-  L  =  ( U  LnOp  W
)
20 blocni.5 . . . 4  |-  B  =  ( U  BLnOp  W )
21 blocni.w . . . 4  |-  W  e.  NrmCVec
22 blocni.l . . . 4  |-  T  e.  L
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 22305 . . 3  |-  ( ( ( 0vec `  U
)  e.  ( BaseSet `  U )  /\  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )  ->  T  e.  B
)
245, 16, 23sylancr 645 . 2  |-  ( T  e.  ( J  Cn  K )  ->  T  e.  B )
25 eleq1 2496 . . 3  |-  ( T  =  ( U  0op  W )  ->  ( T  e.  ( J  Cn  K
)  <->  ( U  0op  W )  e.  ( J  Cn  K ) ) )
26 simprr 734 . . . . . . . 8  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  y  e.  RR+ )
27 eqid 2436 . . . . . . . . . . . . 13  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
28 eqid 2436 . . . . . . . . . . . . 13  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
292, 27, 28, 20nmblore 22287 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  (
( U normOp OLD W
) `  T )  e.  RR )
301, 21, 29mp3an12 1269 . . . . . . . . . . 11  |-  ( T  e.  B  ->  (
( U normOp OLD W
) `  T )  e.  RR )
31 eqid 2436 . . . . . . . . . . . . . 14  |-  ( U  0op  W )  =  ( U  0op  W
)
3228, 31, 19nmlnogt0 22298 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =/=  ( U  0op  W )  <->  0  <  (
( U normOp OLD W
) `  T )
) )
331, 21, 22, 32mp3an 1279 . . . . . . . . . . . 12  |-  ( T  =/=  ( U  0op  W )  <->  0  <  (
( U normOp OLD W
) `  T )
)
3433biimpi 187 . . . . . . . . . . 11  |-  ( T  =/=  ( U  0op  W )  ->  0  <  ( ( U normOp OLD W
) `  T )
)
3530, 34anim12i 550 . . . . . . . . . 10  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  (
( ( U normOp OLD W ) `  T
)  e.  RR  /\  0  <  ( ( U
normOp OLD W ) `  T ) ) )
36 elrp 10614 . . . . . . . . . 10  |-  ( ( ( U normOp OLD W
) `  T )  e.  RR+  <->  ( ( ( U normOp OLD W ) `  T )  e.  RR  /\  0  <  ( ( U normOp OLD W ) `  T ) ) )
3735, 36sylibr 204 . . . . . . . . 9  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  (
( U normOp OLD W
) `  T )  e.  RR+ )
3837adantr 452 . . . . . . . 8  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( ( U normOp OLD W ) `  T )  e.  RR+ )
3926, 38rpdivcld 10665 . . . . . . 7  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( y  /  ( ( U
normOp OLD W ) `  T ) )  e.  RR+ )
40 simprl 733 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  x  e.  ( BaseSet `  U )
)
41 metcl 18362 . . . . . . . . . . . 12  |-  ( ( C  e.  ( Met `  ( BaseSet `  U )
)  /\  x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet
`  U ) )  ->  ( x C w )  e.  RR )
428, 41mp3an1 1266 . . . . . . . . . . 11  |-  ( ( x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( x C w )  e.  RR )
4340, 42sylan 458 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( x C w )  e.  RR )
44 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
y  e.  RR+ )
4544rpred 10648 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
y  e.  RR )
4635ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( U
normOp OLD W ) `  T )  e.  RR  /\  0  <  ( ( U normOp OLD W ) `  T ) ) )
47 ltmuldiv2 9881 . . . . . . . . . 10  |-  ( ( ( x C w )  e.  RR  /\  y  e.  RR  /\  (
( ( U normOp OLD W ) `  T
)  e.  RR  /\  0  <  ( ( U
normOp OLD W ) `  T ) ) )  ->  ( ( ( ( U normOp OLD W
) `  T )  x.  ( x C w ) )  <  y  <->  ( x C w )  <  ( y  / 
( ( U normOp OLD W ) `  T
) ) ) )
4843, 45, 46, 47syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  <  y  <->  ( x C w )  < 
( y  /  (
( U normOp OLD W
) `  T )
) ) )
49 id 20 . . . . . . . . . . . 12  |-  ( ( T  e.  B  /\  x  e.  ( BaseSet `  U ) )  -> 
( T  e.  B  /\  x  e.  ( BaseSet
`  U ) ) )
5049ad2ant2r 728 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( T  e.  B  /\  x  e.  ( BaseSet `  U )
) )
512, 27, 6, 17, 28, 20, 1, 21blometi 22304 . . . . . . . . . . . 12  |-  ( ( T  e.  B  /\  x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) ) )
52513expa 1153 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  x  e.  ( BaseSet
`  U ) )  /\  w  e.  (
BaseSet `  U ) )  ->  ( ( T `
 x ) D ( T `  w
) )  <_  (
( ( U normOp OLD W ) `  T
)  x.  ( x C w ) ) )
5350, 52sylan 458 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( T `  x ) D ( T `  w ) )  <_  ( (
( U normOp OLD W
) `  T )  x.  ( x C w ) ) )
542, 27, 19lnof 22256 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : ( BaseSet `  U
) --> ( BaseSet `  W
) )
551, 21, 22, 54mp3an 1279 . . . . . . . . . . . . . 14  |-  T :
( BaseSet `  U ) --> ( BaseSet `  W )
5655ffvelrni 5869 . . . . . . . . . . . . 13  |-  ( x  e.  ( BaseSet `  U
)  ->  ( T `  x )  e.  (
BaseSet `  W ) )
5755ffvelrni 5869 . . . . . . . . . . . . 13  |-  ( w  e.  ( BaseSet `  U
)  ->  ( T `  w )  e.  (
BaseSet `  W ) )
5827, 17imsmet 22183 . . . . . . . . . . . . . . 15  |-  ( W  e.  NrmCVec  ->  D  e.  ( Met `  ( BaseSet `  W ) ) )
5921, 58ax-mp 8 . . . . . . . . . . . . . 14  |-  D  e.  ( Met `  ( BaseSet
`  W ) )
60 metcl 18362 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  ( BaseSet `  W )
)  /\  ( T `  x )  e.  (
BaseSet `  W )  /\  ( T `  w )  e.  ( BaseSet `  W
) )  ->  (
( T `  x
) D ( T `
 w ) )  e.  RR )
6159, 60mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( ( T `  x
)  e.  ( BaseSet `  W )  /\  ( T `  w )  e.  ( BaseSet `  W )
)  ->  ( ( T `  x ) D ( T `  w ) )  e.  RR )
6256, 57, 61syl2an 464 . . . . . . . . . . . 12  |-  ( ( x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( ( T `  x ) D ( T `  w ) )  e.  RR )
6340, 62sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( T `  x ) D ( T `  w ) )  e.  RR )
64 remulcl 9075 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U normOp OLD W ) `  T
)  e.  RR  /\  ( x C w )  e.  RR )  ->  ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6530, 42, 64syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( T  e.  B  /\  ( x  e.  ( BaseSet
`  U )  /\  w  e.  ( BaseSet `  U ) ) )  ->  ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6665anassrs 630 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  B  /\  x  e.  ( BaseSet
`  U ) )  /\  w  e.  (
BaseSet `  U ) )  ->  ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6766adantllr 700 . . . . . . . . . . . 12  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  x  e.  ( BaseSet `  U )
)  /\  w  e.  ( BaseSet `  U )
)  ->  ( (
( U normOp OLD W
) `  T )  x.  ( x C w ) )  e.  RR )
6867adantlrr 702 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR )
69 lelttr 9165 . . . . . . . . . . 11  |-  ( ( ( ( T `  x ) D ( T `  w ) )  e.  RR  /\  ( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  /\  ( ( ( U normOp OLD W
) `  T )  x.  ( x C w ) )  <  y
)  ->  ( ( T `  x ) D ( T `  w ) )  < 
y ) )
7063, 68, 45, 69syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOp OLD W ) `  T )  x.  (
x C w ) )  /\  ( ( ( U normOp OLD W
) `  T )  x.  ( x C w ) )  <  y
)  ->  ( ( T `  x ) D ( T `  w ) )  < 
y ) )
7153, 70mpand 657 . . . . . . . . 9  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( U normOp OLD W ) `  T )  x.  (
x C w ) )  <  y  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
7248, 71sylbird 227 . . . . . . . 8  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( x C w )  <  (
y  /  ( ( U normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
7372ralrimiva 2789 . . . . . . 7  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  (
y  /  ( ( U normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
74 breq2 4216 . . . . . . . . . 10  |-  ( z  =  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  (
( x C w )  <  z  <->  ( x C w )  < 
( y  /  (
( U normOp OLD W
) `  T )
) ) )
7574imbi1d 309 . . . . . . . . 9  |-  ( z  =  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  (
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y )  <-> 
( ( x C w )  <  (
y  /  ( ( U normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) )
7675ralbidv 2725 . . . . . . . 8  |-  ( z  =  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  ( A. w  e.  ( BaseSet
`  U ) ( ( x C w )  <  z  -> 
( ( T `  x ) D ( T `  w ) )  <  y )  <->  A. w  e.  ( BaseSet
`  U ) ( ( x C w )  <  ( y  /  ( ( U
normOp OLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) )
7776rspcev 3052 . . . . . . 7  |-  ( ( ( y  /  (
( U normOp OLD W
) `  T )
)  e.  RR+  /\  A. w  e.  ( BaseSet `  U ) ( ( x C w )  <  ( y  / 
( ( U normOp OLD W ) `  T
) )  ->  (
( T `  x
) D ( T `
 w ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  ( BaseSet `  U ) ( ( x C w )  <  z  ->  (
( T `  x
) D ( T `
 w ) )  <  y ) )
7839, 73, 77syl2anc 643 . . . . . 6  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) )
7978ralrimivva 2798 . . . . 5  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) )
8079, 55jctil 524 . . . 4  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  ( T : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) ) )
81 metxmet 18364 . . . . . 6  |-  ( D  e.  ( Met `  ( BaseSet
`  W ) )  ->  D  e.  ( * Met `  ( BaseSet
`  W ) ) )
8259, 81ax-mp 8 . . . . 5  |-  D  e.  ( * Met `  ( BaseSet
`  W ) )
8311, 18metcn 18573 . . . . 5  |-  ( ( C  e.  ( * Met `  ( BaseSet `  U ) )  /\  D  e.  ( * Met `  ( BaseSet `  W
) ) )  -> 
( T  e.  ( J  Cn  K )  <-> 
( T : (
BaseSet `  U ) --> (
BaseSet `  W )  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  (
BaseSet `  U ) ( ( x C w )  <  z  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) ) )
8410, 82, 83mp2an 654 . . . 4  |-  ( T  e.  ( J  Cn  K )  <->  ( T : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) ) )
8580, 84sylibr 204 . . 3  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  T  e.  ( J  Cn  K
) )
86 eqid 2436 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
872, 86, 310ofval 22288 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U  0op  W )  =  ( ( BaseSet `  U
)  X.  { (
0vec `  W ) } ) )
881, 21, 87mp2an 654 . . . . 5  |-  ( U  0op  W )  =  ( ( BaseSet `  U
)  X.  { (
0vec `  W ) } )
8918mopntopon 18469 . . . . . . 7  |-  ( D  e.  ( * Met `  ( BaseSet `  W )
)  ->  K  e.  (TopOn `  ( BaseSet `  W
) ) )
9082, 89ax-mp 8 . . . . . 6  |-  K  e.  (TopOn `  ( BaseSet `  W
) )
9127, 86nvzcl 22115 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
9221, 91ax-mp 8 . . . . . 6  |-  ( 0vec `  W )  e.  (
BaseSet `  W )
93 cnconst2 17347 . . . . . 6  |-  ( ( J  e.  (TopOn `  ( BaseSet `  U )
)  /\  K  e.  (TopOn `  ( BaseSet `  W
) )  /\  ( 0vec `  W )  e.  ( BaseSet `  W )
)  ->  ( ( BaseSet
`  U )  X. 
{ ( 0vec `  W
) } )  e.  ( J  Cn  K
) )
9413, 90, 92, 93mp3an 1279 . . . . 5  |-  ( (
BaseSet `  U )  X. 
{ ( 0vec `  W
) } )  e.  ( J  Cn  K
)
9588, 94eqeltri 2506 . . . 4  |-  ( U  0op  W )  e.  ( J  Cn  K
)
9695a1i 11 . . 3  |-  ( T  e.  B  ->  ( U  0op  W )  e.  ( J  Cn  K
) )
9725, 85, 96pm2.61ne 2679 . 2  |-  ( T  e.  B  ->  T  e.  ( J  Cn  K
) )
9824, 97impbii 181 1  |-  ( T  e.  ( J  Cn  K )  <->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   {csn 3814   class class class wbr 4212    X. cxp 4876   -->wf 5450   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990    x. cmul 8995    < clt 9120    <_ cle 9121    / cdiv 9677   RR+crp 10612   * Metcxmt 16686   Metcme 16687   MetOpencmopn 16691  TopOnctopon 16959    Cn ccn 17288    CnP ccnp 17289   NrmCVeccnv 22063   BaseSetcba 22065   0veccn0v 22067   IndMetcims 22070    LnOp clno 22241   normOp OLDcnmoo 22242    BLnOp cblo 22243    0op c0o 22244
This theorem is referenced by:  lnocni  22307  blocn  22308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cn 17291  df-cnp 17292  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782  df-ablo 21870  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-0v 22077  df-vs 22078  df-nmcv 22079  df-ims 22080  df-lno 22245  df-nmoo 22246  df-blo 22247  df-0o 22248
  Copyright terms: Public domain W3C validator