MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.1 Unicode version

Theorem bm1.1 2243
Description: Any set defined by a property is the only set defined by that property. Theorem 1.1 of [BellMachover] p. 462. (Contributed by NM, 30-Jun-1994.)
Hypothesis
Ref Expression
bm1.1.1  |-  F/ x ph
Assertion
Ref Expression
bm1.1  |-  ( E. x A. y ( y  e.  x  <->  ph )  ->  E! x A. y ( y  e.  x  <->  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bm1.1
StepHypRef Expression
1 nfv 1629 . . . . . . . 8  |-  F/ x  y  e.  z
2 bm1.1.1 . . . . . . . 8  |-  F/ x ph
31, 2nfbi 1738 . . . . . . 7  |-  F/ x
( y  e.  z  <->  ph )
43nfal 1732 . . . . . 6  |-  F/ x A. y ( y  e.  z  <->  ph )
5 elequ2 1832 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  x  <->  y  e.  z ) )
65bibi1d 312 . . . . . . 7  |-  ( x  =  z  ->  (
( y  e.  x  <->  ph )  <->  ( y  e.  z  <->  ph ) ) )
76albidv 2005 . . . . . 6  |-  ( x  =  z  ->  ( A. y ( y  e.  x  <->  ph )  <->  A. y
( y  e.  z  <->  ph ) ) )
84, 7sbie 1911 . . . . 5  |-  ( [ z  /  x ] A. y ( y  e.  x  <->  ph )  <->  A. y
( y  e.  z  <->  ph ) )
9 19.26 1592 . . . . . 6  |-  ( A. y ( ( y  e.  x  <->  ph )  /\  ( y  e.  z  <->  ph ) )  <->  ( A. y ( y  e.  x  <->  ph )  /\  A. y ( y  e.  z  <->  ph ) ) )
10 biantr 902 . . . . . . . 8  |-  ( ( ( y  e.  x  <->  ph )  /\  ( y  e.  z  <->  ph ) )  ->  ( y  e.  x  <->  y  e.  z ) )
1110alimi 1546 . . . . . . 7  |-  ( A. y ( ( y  e.  x  <->  ph )  /\  ( y  e.  z  <->  ph ) )  ->  A. y
( y  e.  x  <->  y  e.  z ) )
12 ax-ext 2239 . . . . . . 7  |-  ( A. y ( y  e.  x  <->  y  e.  z )  ->  x  =  z )
1311, 12syl 17 . . . . . 6  |-  ( A. y ( ( y  e.  x  <->  ph )  /\  ( y  e.  z  <->  ph ) )  ->  x  =  z )
149, 13sylbir 206 . . . . 5  |-  ( ( A. y ( y  e.  x  <->  ph )  /\  A. y ( y  e.  z  <->  ph ) )  ->  x  =  z )
158, 14sylan2b 463 . . . 4  |-  ( ( A. y ( y  e.  x  <->  ph )  /\  [ z  /  x ] A. y ( y  e.  x  <->  ph ) )  ->  x  =  z )
1615gen2 1541 . . 3  |-  A. x A. z ( ( A. y ( y  e.  x  <->  ph )  /\  [
z  /  x ] A. y ( y  e.  x  <->  ph ) )  ->  x  =  z )
1716jctr 528 . 2  |-  ( E. x A. y ( y  e.  x  <->  ph )  -> 
( E. x A. y ( y  e.  x  <->  ph )  /\  A. x A. z ( ( A. y ( y  e.  x  <->  ph )  /\  [ z  /  x ] A. y ( y  e.  x  <->  ph ) )  ->  x  =  z )
) )
18 nfv 1629 . . 3  |-  F/ z A. y ( y  e.  x  <->  ph )
1918eu2 2143 . 2  |-  ( E! x A. y ( y  e.  x  <->  ph )  <->  ( E. x A. y ( y  e.  x  <->  ph )  /\  A. x A. z ( ( A. y ( y  e.  x  <->  ph )  /\  [ z  /  x ] A. y ( y  e.  x  <->  ph ) )  ->  x  =  z )
) )
2017, 19sylibr 205 1  |-  ( E. x A. y ( y  e.  x  <->  ph )  ->  E! x A. y ( y  e.  x  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537   F/wnf 1539    = wceq 1619    e. wcel 1621   [wsb 1883   E!weu 2118
This theorem is referenced by:  zfnuleu  4120
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122
  Copyright terms: Public domain W3C validator