MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.3ii Unicode version

Theorem bm1.3ii 4145
Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4142. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
bm1.3ii.1  |-  E. x A. y ( ph  ->  y  e.  x )
Assertion
Ref Expression
bm1.3ii  |-  E. x A. y ( y  e.  x  <->  ph )
Distinct variable groups:    ph, x    x, y
Dummy variable  z is distinct from all other variables.
Allowed substitution hint:    ph( y)

Proof of Theorem bm1.3ii
StepHypRef Expression
1 bm1.3ii.1 . . . . 5  |-  E. x A. y ( ph  ->  y  e.  x )
2 elequ2 1690 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  x  <->  y  e.  z ) )
32imbi2d 309 . . . . . . 7  |-  ( x  =  z  ->  (
( ph  ->  y  e.  x )  <->  ( ph  ->  y  e.  z ) ) )
43albidv 1612 . . . . . 6  |-  ( x  =  z  ->  ( A. y ( ph  ->  y  e.  x )  <->  A. y
( ph  ->  y  e.  z ) ) )
54cbvexv 1948 . . . . 5  |-  ( E. x A. y (
ph  ->  y  e.  x
)  <->  E. z A. y
( ph  ->  y  e.  z ) )
61, 5mpbi 201 . . . 4  |-  E. z A. y ( ph  ->  y  e.  z )
7 ax-sep 4142 . . . 4  |-  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
)
86, 7pm3.2i 443 . . 3  |-  ( E. z A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
98exan 1824 . 2  |-  E. z
( A. y (
ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )
10 19.42v 1847 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  <->  ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) ) )
11 bimsc1 906 . . . . . 6  |-  ( ( ( ph  ->  y  e.  z )  /\  (
y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  (
y  e.  x  <->  ph ) )
1211alanimi 1550 . . . . 5  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  A. y
( y  e.  x  <->  ph ) )
1312eximi 1564 . . . 4  |-  ( E. x ( A. y
( ph  ->  y  e.  z )  /\  A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1410, 13sylbir 206 . . 3  |-  ( ( A. y ( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
1514exlimiv 1667 . 2  |-  ( E. z ( A. y
( ph  ->  y  e.  z )  /\  E. x A. y ( y  e.  x  <->  ( y  e.  z  /\  ph )
) )  ->  E. x A. y ( y  e.  x  <->  ph ) )
169, 15ax-mp 10 1  |-  E. x A. y ( y  e.  x  <->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685
This theorem is referenced by:  axpow3  4190  pwex  4192  zfpair2  4214  axun2  4513  uniex2  4514
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-sep 4142
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533
  Copyright terms: Public domain W3C validator