MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm2.5ii Structured version   Unicode version

Theorem bm2.5ii 4779
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
bm2.5ii.1  |-  A  e. 
_V
Assertion
Ref Expression
bm2.5ii  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Distinct variable group:    x, y, A

Proof of Theorem bm2.5ii
StepHypRef Expression
1 bm2.5ii.1 . . 3  |-  A  e. 
_V
21ssonunii 4761 . 2  |-  ( A 
C_  On  ->  U. A  e.  On )
3 unissb 4038 . . . . . 6  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
43a1i 11 . . . . 5  |-  ( x  e.  On  ->  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x ) )
54rabbiia 2939 . . . 4  |-  { x  e.  On  |  U. A  C_  x }  =  {
x  e.  On  |  A. y  e.  A  y  C_  x }
65inteqi 4047 . . 3  |-  |^| { x  e.  On  |  U. A  C_  x }  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x }
7 intmin 4063 . . 3  |-  ( U. A  e.  On  ->  |^|
{ x  e.  On  |  U. A  C_  x }  =  U. A )
86, 7syl5reqr 2483 . 2  |-  ( U. A  e.  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
92, 8syl 16 1  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   A.wral 2698   {crab 2702   _Vcvv 2949    C_ wss 3313   U.cuni 4008   |^|cint 4043   Oncon0 4574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-br 4206  df-opab 4260  df-tr 4296  df-eprel 4487  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578
  Copyright terms: Public domain W3C validator