MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd Unicode version

Theorem bnd 7558
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 5710), derived from the Collection Principle cp 7557. Its strength lies in the rather profound fact that  ph ( x ,  y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.)
Assertion
Ref Expression
bnd  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem bnd
StepHypRef Expression
1 cp 7557 . . 3  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
2 ralim 2615 . . . 4  |-  ( A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  -> 
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
32eximi 1563 . . 3  |-  ( E. w A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  ->  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
41, 3ax-mp 8 . 2  |-  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph )
5419.37aiv 1843 1  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1528   A.wral 2544   E.wrex 2545
This theorem is referenced by:  bnd2  7559
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-reg 7302  ax-inf2 7338
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-recs 6384  df-rdg 6419  df-r1 7432  df-rank 7433
  Copyright terms: Public domain W3C validator