HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem bnd 6372
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 4853), derived from the Collection Principle cp 6371. Its strength lies in the rather profound fact that does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom.
Assertion
Ref Expression
bnd
Distinct variable groups:   ,,   ,,,
Allowed substitution hints:   (,)

Proof of Theorem bnd
StepHypRef Expression
1 cp 6371 . . 3
2 ralim 2189 . . . 4
32eximi 1362 . . 3
41, 3ax-mp 8 . 2
5419.37aiv 1728 1
Colors of variables: wff set class
Syntax hints:   wi 4  wex 1335  wral 2127  wrex 2128
This theorem is referenced by:  bnd2 6373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1331  ax-6 1332  ax-7 1333  ax-gen 1334  ax-8 1418  ax-10 1419  ax-11 1420  ax-12 1421  ax-13 1422  ax-14 1423  ax-17 1430  ax-9 1445  ax-4 1451  ax-16 1629  ax-ext 1900  ax-rep 3456  ax-sep 3466  ax-nul 3475  ax-pow 3511  ax-pr 3535  ax-un 3809  ax-reg 6182  ax-inf2 6217
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-3or 900  df-3an 901  df-ex 1336  df-sb 1591  df-eu 1818  df-mo 1819  df-clab 1906  df-cleq 1911  df-clel 1914  df-ne 2037  df-ral 2131  df-rex 2132  df-rab 2134  df-v 2326  df-sbc 2493  df-csb 2575  df-dif 2637  df-un 2639  df-in 2641  df-ss 2645  df-pss 2647  df-nul 2903  df-if 3009  df-pw 3068  df-sn 3085  df-pr 3086  df-tp 3087  df-op 3088  df-uni 3224  df-int 3258  df-iun 3297  df-iin 3298  df-br 3371  df-opab 3425  df-tr 3440  df-eprel 3620  df-id 3623  df-po 3628  df-so 3642  df-fr 3662  df-we 3678  df-ord 3694  df-on 3695  df-lim 3696  df-suc 3697  df-om 3974  df-xp 4021  df-rel 4022  df-cnv 4023  df-co 4024  df-dm 4025  df-rn 4026  df-res 4027  df-ima 4028  df-fun 4029  df-fn 4030  df-f 4031  df-fv 4035  df-mpt 5142  df-rdg 5468  df-r1 6258  df-rank 6259
Copyright terms: Public domain