HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem bnd 6211
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 4790), derived from the Collection Principle cp 6210. Its strength lies in the rather profound fact that ph(x, y) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom.
Assertion
Ref Expression
bnd |- (A.x e. z E.yph -> E.wA.x e. z E.y e. w ph)
Distinct variable groups:   ph,z,w   x,y,z,w
Allowed substitution hints:   ph(x,y)

Proof of Theorem bnd
StepHypRef Expression
1 cp 6210 . . 3 |- E.wA.x e. z (E.yph -> E.y e. w ph)
2 ralim 2202 . . . 4 |- (A.x e. z (E.yph -> E.y e. w ph) -> (A.x e. z E.yph -> A.x e. z E.y e. w ph))
32eximi 1376 . . 3 |- (E.wA.x e. z (E.yph -> E.y e. w ph) -> E.w(A.x e. z E.yph -> A.x e. z E.y e. w ph))
41, 3ax-mp 8 . 2 |- E.w(A.x e. z E.yph -> A.x e. z E.y e. w ph)
5419.37aiv 1742 1 |- (A.x e. z E.yph -> E.wA.x e. z E.y e. w ph)
Colors of variables: wff set class
Syntax hints:   -> wi 4  E.wex 1349  A.wral 2141  E.wrex 2142
This theorem is referenced by:  bnd2 6212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1345  ax-6 1346  ax-7 1347  ax-gen 1348  ax-8 1432  ax-10 1433  ax-11 1434  ax-12 1435  ax-13 1436  ax-14 1437  ax-17 1444  ax-9 1459  ax-4 1465  ax-16 1643  ax-ext 1914  ax-rep 3440  ax-sep 3450  ax-nul 3459  ax-pow 3495  ax-pr 3519  ax-un 3791  ax-reg 6020  ax-inf2 6055
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-3or 916  df-3an 917  df-ex 1350  df-sb 1605  df-eu 1832  df-mo 1833  df-clab 1920  df-cleq 1925  df-clel 1928  df-ne 2052  df-ral 2145  df-rex 2146  df-rab 2148  df-v 2339  df-sbc 2504  df-csb 2579  df-dif 2639  df-un 2641  df-in 2643  df-ss 2645  df-pss 2647  df-nul 2901  df-if 3002  df-pw 3060  df-sn 3077  df-pr 3078  df-tp 3079  df-op 3080  df-uni 3210  df-int 3244  df-iun 3282  df-iin 3283  df-br 3355  df-opab 3409  df-tr 3424  df-eprel 3604  df-id 3607  df-po 3612  df-so 3626  df-fr 3645  df-we 3661  df-ord 3677  df-on 3678  df-lim 3679  df-suc 3680  df-om 3954  df-xp 4001  df-rel 4002  df-cnv 4003  df-co 4004  df-dm 4005  df-rn 4006  df-res 4007  df-ima 4008  df-fun 4009  df-fn 4010  df-f 4011  df-fv 4015  df-mpt 5051  df-rdg 5340  df-r1 6097  df-rank 6098
Copyright terms: Public domain