MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd Unicode version

Theorem bnd 7054
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 5207), derived from the Collection Principle cp 7053. Its strength lies in the rather profound fact that  ph ( x ,  y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.)
Assertion
Ref Expression
bnd  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem bnd
StepHypRef Expression
1 cp 7053 . . 3  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
2 ralim 2341 . . . 4  |-  ( A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  -> 
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
32eximi 1478 . . 3  |-  ( E. w A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  ->  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
41, 3ax-mp 8 . 2  |-  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph )
5419.37aiv 1882 1  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1450   A.wral 2279   E.wrex 2280
This theorem is referenced by:  bnd2  7055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1446  ax-6 1447  ax-7 1448  ax-gen 1449  ax-8 1528  ax-11 1529  ax-13 1530  ax-14 1531  ax-17 1533  ax-12o 1567  ax-10 1581  ax-9 1587  ax-4 1594  ax-16 1780  ax-ext 2051  ax-rep 3701  ax-sep 3711  ax-nul 3719  ax-pow 3755  ax-pr 3779  ax-un 4071  ax-reg 6799  ax-inf2 6835
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 897  df-3an 898  df-ex 1451  df-sb 1741  df-eu 1963  df-mo 1964  df-clab 2057  df-cleq 2062  df-clel 2065  df-ne 2189  df-ral 2283  df-rex 2284  df-reu 2285  df-rab 2286  df-v 2482  df-sbc 2656  df-csb 2738  df-dif 2801  df-un 2803  df-in 2805  df-ss 2809  df-pss 2811  df-nul 3078  df-if 3187  df-pw 3248  df-sn 3266  df-pr 3267  df-tp 3268  df-op 3269  df-uni 3435  df-int 3469  df-iun 3512  df-iin 3513  df-br 3597  df-opab 3651  df-mpt 3652  df-tr 3684  df-eprel 3866  df-id 3870  df-po 3875  df-so 3876  df-fr 3913  df-we 3915  df-ord 3956  df-on 3957  df-lim 3958  df-suc 3959  df-om 4234  df-xp 4280  df-rel 4281  df-cnv 4282  df-co 4283  df-dm 4284  df-rn 4285  df-res 4286  df-ima 4287  df-fun 4288  df-fn 4289  df-f 4290  df-f1 4291  df-fo 4292  df-f1o 4293  df-fv 4294  df-recs 5853  df-rdg 5888  df-r1 6929  df-rank 6930
  Copyright terms: Public domain W3C validator