HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem bnd 7038
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 5192), derived from the Collection Principle cp 7037. Its strength lies in the rather profound fact that  ph ( x ,  y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.)
Assertion
Ref Expression
bnd  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem bnd
StepHypRef Expression
1 cp 7037 . . 3  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
2 ralim 2333 . . . 4  |-  ( A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  -> 
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
32eximi 1471 . . 3  |-  ( E. w A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  ->  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
41, 3ax-mp 8 . 2  |-  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph )
5419.37aiv 1874 1  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1443   A.wral 2271   E.wrex 2272
This theorem is referenced by:  bnd2  7039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1439  ax-6 1440  ax-7 1441  ax-gen 1442  ax-8 1521  ax-11 1522  ax-13 1523  ax-14 1524  ax-17 1526  ax-12o 1559  ax-10 1573  ax-9 1579  ax-4 1586  ax-16 1772  ax-ext 2043  ax-rep 3688  ax-sep 3698  ax-nul 3706  ax-pow 3742  ax-pr 3766  ax-un 4058  ax-reg 6783  ax-inf2 6819
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 894  df-3an 895  df-ex 1444  df-sb 1733  df-eu 1955  df-mo 1956  df-clab 2049  df-cleq 2054  df-clel 2057  df-ne 2181  df-ral 2275  df-rex 2276  df-reu 2277  df-rab 2278  df-v 2474  df-sbc 2648  df-csb 2730  df-dif 2793  df-un 2795  df-in 2797  df-ss 2801  df-pss 2803  df-nul 3070  df-if 3179  df-pw 3240  df-sn 3258  df-pr 3259  df-tp 3260  df-op 3261  df-uni 3422  df-int 3456  df-iun 3499  df-iin 3500  df-br 3584  df-opab 3638  df-mpt 3639  df-tr 3671  df-eprel 3853  df-id 3857  df-po 3862  df-so 3863  df-fr 3900  df-we 3902  df-ord 3943  df-on 3944  df-lim 3945  df-suc 3946  df-om 4221  df-xp 4267  df-rel 4268  df-cnv 4269  df-co 4270  df-dm 4271  df-rn 4272  df-res 4273  df-ima 4274  df-fun 4275  df-fn 4276  df-f 4277  df-f1 4278  df-fo 4279  df-f1o 4280  df-fv 4281  df-recs 5837  df-rdg 5872  df-r1 6913  df-rank 6914
Copyright terms: Public domain