MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd Unicode version

Theorem bnd 7776
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 5931), derived from the Collection Principle cp 7775. Its strength lies in the rather profound fact that  ph ( x ,  y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. (Contributed by NM, 17-Oct-2004.)
Assertion
Ref Expression
bnd  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, z, w   
x, y, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem bnd
StepHypRef Expression
1 cp 7775 . . 3  |-  E. w A. x  e.  z 
( E. y ph  ->  E. y  e.  w  ph )
2 ralim 2741 . . 3  |-  ( A. x  e.  z  ( E. y ph  ->  E. y  e.  w  ph )  -> 
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph ) )
31, 2eximii 1584 . 2  |-  E. w
( A. x  e.  z  E. y ph  ->  A. x  e.  z  E. y  e.  w  ph )
4319.37aiv 1919 1  |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1547   A.wral 2670   E.wrex 2671
This theorem is referenced by:  bnd2  7777
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-reg 7520  ax-inf2 7556
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-rdg 6631  df-r1 7650  df-rank 7651
  Copyright terms: Public domain W3C validator