HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem bnd 6411
Description: A very strong generalization of the Axiom of Replacement (compare zfrep6 4871), derived from the Collection Principle cp 6410. Its strength lies in the rather profound fact that does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom.
Assertion
Ref Expression
bnd
Distinct variable groups:   ,,   ,,,
Allowed substitution hints:   (,)

Proof of Theorem bnd
StepHypRef Expression
1 cp 6410 . . 3
2 ralim 2189 . . . 4
32eximi 1362 . . 3
41, 3ax-mp 8 . 2
5419.37aiv 1728 1
Colors of variables: wff set class
Syntax hints:   wi 4  wex 1335  wral 2127  wrex 2128
This theorem is referenced by:  bnd2 6412
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1331  ax-6 1332  ax-7 1333  ax-gen 1334  ax-8 1418  ax-10 1419  ax-11 1420  ax-12 1421  ax-13 1422  ax-14 1423  ax-17 1430  ax-9 1445  ax-4 1451  ax-16 1629  ax-ext 1900  ax-rep 3469  ax-sep 3479  ax-nul 3488  ax-pow 3524  ax-pr 3548  ax-un 3823  ax-reg 6221  ax-inf2 6256
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-3or 900  df-3an 901  df-ex 1336  df-sb 1591  df-eu 1818  df-mo 1819  df-clab 1906  df-cleq 1911  df-clel 1914  df-ne 2037  df-ral 2131  df-rex 2132  df-rab 2134  df-v 2328  df-sbc 2495  df-csb 2577  df-dif 2639  df-un 2641  df-in 2643  df-ss 2647  df-pss 2649  df-nul 2905  df-if 3012  df-pw 3072  df-sn 3089  df-pr 3090  df-tp 3091  df-op 3092  df-uni 3234  df-int 3268  df-iun 3307  df-iin 3308  df-br 3384  df-opab 3438  df-tr 3453  df-eprel 3634  df-id 3637  df-po 3642  df-so 3656  df-fr 3676  df-we 3692  df-ord 3708  df-on 3709  df-lim 3710  df-suc 3711  df-om 3988  df-xp 4035  df-rel 4036  df-cnv 4037  df-co 4038  df-dm 4039  df-rn 4040  df-res 4041  df-ima 4042  df-fun 4043  df-fn 4044  df-f 4045  df-fv 4049  df-mpt 5165  df-rdg 5498  df-r1 6297  df-rank 6298
Copyright terms: Public domain