MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Unicode version

Theorem bndrank 7397
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V )
Distinct variable group:    x, y, A

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 7351 . . . . . . . 8  |-  ( rank `  y )  e.  On
21onordi 4388 . . . . . . 7  |-  Ord  ( rank `  y )
3 eloni 4295 . . . . . . 7  |-  ( x  e.  On  ->  Ord  x )
4 ordsucsssuc 4505 . . . . . . 7  |-  ( ( Ord  ( rank `  y
)  /\  Ord  x )  ->  ( ( rank `  y )  C_  x  <->  suc  ( rank `  y
)  C_  suc  x ) )
52, 3, 4sylancr 647 . . . . . 6  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  <->  suc  ( rank `  y
)  C_  suc  x ) )
61onsuci 4520 . . . . . . 7  |-  suc  ( rank `  y )  e.  On
7 suceloni 4495 . . . . . . 7  |-  ( x  e.  On  ->  suc  x  e.  On )
8 r1ord3 7338 . . . . . . 7  |-  ( ( suc  ( rank `  y
)  e.  On  /\  suc  x  e.  On )  ->  ( suc  ( rank `  y )  C_  suc  x  ->  ( R1 ` 
suc  ( rank `  y
) )  C_  ( R1 `  suc  x ) ) )
96, 7, 8sylancr 647 . . . . . 6  |-  ( x  e.  On  ->  ( suc  ( rank `  y
)  C_  suc  x  -> 
( R1 `  suc  ( rank `  y )
)  C_  ( R1 ` 
suc  x ) ) )
105, 9sylbid 208 . . . . 5  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  ->  ( R1 ` 
suc  ( rank `  y
) )  C_  ( R1 `  suc  x ) ) )
11 vex 2730 . . . . . 6  |-  y  e. 
_V
1211rankid 7389 . . . . 5  |-  y  e.  ( R1 `  suc  ( rank `  y )
)
13 ssel 3097 . . . . 5  |-  ( ( R1 `  suc  ( rank `  y ) ) 
C_  ( R1 `  suc  x )  ->  (
y  e.  ( R1
`  suc  ( rank `  y ) )  -> 
y  e.  ( R1
`  suc  x )
) )
1410, 12, 13syl6mpi 60 . . . 4  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  ->  y  e.  ( R1 `  suc  x
) ) )
1514ralimdv 2584 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  A  ( rank `  y )  C_  x  ->  A. y  e.  A  y  e.  ( R1 `  suc  x
) ) )
16 dfss3 3093 . . . 4  |-  ( A 
C_  ( R1 `  suc  x )  <->  A. y  e.  A  y  e.  ( R1 `  suc  x
) )
17 fvex 5391 . . . . 5  |-  ( R1
`  suc  x )  e.  _V
1817ssex 4055 . . . 4  |-  ( A 
C_  ( R1 `  suc  x )  ->  A  e.  _V )
1916, 18sylbir 206 . . 3  |-  ( A. y  e.  A  y  e.  ( R1 `  suc  x )  ->  A  e.  _V )
2015, 19syl6 31 . 2  |-  ( x  e.  On  ->  ( A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V ) )
2120rexlimiv 2623 1  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    e. wcel 1621   A.wral 2509   E.wrex 2510   _Vcvv 2727    C_ wss 3078   Ord word 4284   Oncon0 4285   suc csuc 4287   ` cfv 4592   R1cr1 7318   rankcrnk 7319
This theorem is referenced by:  unbndrank  7398  scottex  7439
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-reg 7190  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-r1 7320  df-rank 7321
  Copyright terms: Public domain W3C validator