MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Structured version   Unicode version

Theorem bndrank 7803
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V )
Distinct variable group:    x, y, A

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 7757 . . . . . . . 8  |-  ( rank `  y )  e.  On
21onordi 4721 . . . . . . 7  |-  Ord  ( rank `  y )
3 eloni 4626 . . . . . . 7  |-  ( x  e.  On  ->  Ord  x )
4 ordsucsssuc 4838 . . . . . . 7  |-  ( ( Ord  ( rank `  y
)  /\  Ord  x )  ->  ( ( rank `  y )  C_  x  <->  suc  ( rank `  y
)  C_  suc  x ) )
52, 3, 4sylancr 646 . . . . . 6  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  <->  suc  ( rank `  y
)  C_  suc  x ) )
61onsuci 4853 . . . . . . 7  |-  suc  ( rank `  y )  e.  On
7 suceloni 4828 . . . . . . 7  |-  ( x  e.  On  ->  suc  x  e.  On )
8 r1ord3 7744 . . . . . . 7  |-  ( ( suc  ( rank `  y
)  e.  On  /\  suc  x  e.  On )  ->  ( suc  ( rank `  y )  C_  suc  x  ->  ( R1 ` 
suc  ( rank `  y
) )  C_  ( R1 `  suc  x ) ) )
96, 7, 8sylancr 646 . . . . . 6  |-  ( x  e.  On  ->  ( suc  ( rank `  y
)  C_  suc  x  -> 
( R1 `  suc  ( rank `  y )
)  C_  ( R1 ` 
suc  x ) ) )
105, 9sylbid 208 . . . . 5  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  ->  ( R1 ` 
suc  ( rank `  y
) )  C_  ( R1 `  suc  x ) ) )
11 vex 2968 . . . . . 6  |-  y  e. 
_V
1211rankid 7795 . . . . 5  |-  y  e.  ( R1 `  suc  ( rank `  y )
)
13 ssel 3331 . . . . 5  |-  ( ( R1 `  suc  ( rank `  y ) ) 
C_  ( R1 `  suc  x )  ->  (
y  e.  ( R1
`  suc  ( rank `  y ) )  -> 
y  e.  ( R1
`  suc  x )
) )
1410, 12, 13syl6mpi 61 . . . 4  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  ->  y  e.  ( R1 `  suc  x
) ) )
1514ralimdv 2792 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  A  ( rank `  y )  C_  x  ->  A. y  e.  A  y  e.  ( R1 `  suc  x
) ) )
16 dfss3 3327 . . . 4  |-  ( A 
C_  ( R1 `  suc  x )  <->  A. y  e.  A  y  e.  ( R1 `  suc  x
) )
17 fvex 5773 . . . . 5  |-  ( R1
`  suc  x )  e.  _V
1817ssex 4382 . . . 4  |-  ( A 
C_  ( R1 `  suc  x )  ->  A  e.  _V )
1916, 18sylbir 206 . . 3  |-  ( A. y  e.  A  y  e.  ( R1 `  suc  x )  ->  A  e.  _V )
2015, 19syl6 32 . 2  |-  ( x  e.  On  ->  ( A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V ) )
2120rexlimiv 2831 1  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    e. wcel 1728   A.wral 2712   E.wrex 2713   _Vcvv 2965    C_ wss 3309   Ord word 4615   Oncon0 4616   suc csuc 4618   ` cfv 5489   R1cr1 7724   rankcrnk 7725
This theorem is referenced by:  unbndrank  7804  scottex  7847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-reg 7596  ax-inf2 7632
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-recs 6669  df-rdg 6704  df-r1 7726  df-rank 7727
  Copyright terms: Public domain W3C validator