Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj170 Structured version   Unicode version

Theorem bnj170 29136
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj170  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ps  /\  ch )  /\  ph )
)

Proof of Theorem bnj170
StepHypRef Expression
1 3anrot 942 . 2  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ps  /\  ch  /\ 
ph ) )
2 df-3an 939 . 2  |-  ( ( ps  /\  ch  /\  ph )  <->  ( ( ps 
/\  ch )  /\  ph ) )
31, 2bitri 242 1  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ps  /\  ch )  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937
This theorem is referenced by:  bnj543  29338  bnj605  29352  bnj594  29357  bnj607  29361  bnj908  29376  bnj1173  29445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator