Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj521 Unicode version

Theorem bnj521 28838
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj521  |-  ( A  i^i  { A }
)  =  (/)

Proof of Theorem bnj521
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 7314 . . . 4  |-  -.  A  e.  A
2 elin 3360 . . . . . 6  |-  ( x  e.  ( A  i^i  { A } )  <->  ( x  e.  A  /\  x  e.  { A } ) )
3 elsn 3657 . . . . . . 7  |-  ( x  e.  { A }  <->  x  =  A )
4 eleq1 2345 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
54biimpac 472 . . . . . . 7  |-  ( ( x  e.  A  /\  x  =  A )  ->  A  e.  A )
63, 5sylan2b 461 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  { A } )  ->  A  e.  A )
72, 6sylbi 187 . . . . 5  |-  ( x  e.  ( A  i^i  { A } )  ->  A  e.  A )
87exlimiv 1668 . . . 4  |-  ( E. x  x  e.  ( A  i^i  { A } )  ->  A  e.  A )
91, 8mto 167 . . 3  |-  -.  E. x  x  e.  ( A  i^i  { A }
)
10 n0 3466 . . 3  |-  ( ( A  i^i  { A } )  =/=  (/)  <->  E. x  x  e.  ( A  i^i  { A } ) )
119, 10mtbir 290 . 2  |-  -.  ( A  i^i  { A }
)  =/=  (/)
12 nne 2452 . 2  |-  ( -.  ( A  i^i  { A } )  =/=  (/)  <->  ( A  i^i  { A } )  =  (/) )
1311, 12mpbi 199 1  |-  ( A  i^i  { A }
)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686    =/= wne 2448    i^i cin 3153   (/)c0 3457   {csn 3642
This theorem is referenced by:  bnj927  28873  bnj535  28995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216  ax-reg 7308
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-nul 3458  df-sn 3648  df-pr 3649
  Copyright terms: Public domain W3C validator