Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj60 Unicode version

Theorem bnj60 28141
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj60.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj60.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj60.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj60.4  |-  F  = 
U. C
Assertion
Ref Expression
bnj60  |-  ( R 
FrSe  A  ->  F  Fn  A )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f, x    R, d, f, x
Allowed substitution hints:    B( x, d)    C( x, f, d)    F( x, f, d)    Y( x, f, d)

Proof of Theorem bnj60
StepHypRef Expression
1 bnj60.1 . . . . 5  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
2 bnj60.2 . . . . 5  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
3 bnj60.3 . . . . 5  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
41, 2, 3bnj1497 28139 . . . 4  |-  A. g  e.  C  Fun  g
5 eqid 2258 . . . . . . . 8  |-  ( dom  g  i^i  dom  h
)  =  ( dom  g  i^i  dom  h
)
61, 2, 3, 5bnj1311 28103 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
763expia 1158 . . . . . 6  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  ( h  e.  C  ->  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) ) )
87ralrimiv 2600 . . . . 5  |-  ( ( R  FrSe  A  /\  g  e.  C )  ->  A. h  e.  C  ( g  |`  ( dom  g  i^i  dom  h
) )  =  ( h  |`  ( dom  g  i^i  dom  h )
) )
98ralrimiva 2601 . . . 4  |-  ( R 
FrSe  A  ->  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )
10 biid 229 . . . . 5  |-  ( A. g  e.  C  Fun  g 
<-> 
A. g  e.  C  Fun  g )
11 biid 229 . . . . 5  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  <-> 
( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  (
g  |`  ( dom  g  i^i  dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) ) )
1210, 5, 11bnj1383 27913 . . . 4  |-  ( ( A. g  e.  C  Fun  g  /\  A. g  e.  C  A. h  e.  C  ( g  |`  ( dom  g  i^i 
dom  h ) )  =  ( h  |`  ( dom  g  i^i  dom  h ) ) )  ->  Fun  U. C )
134, 9, 12sylancr 647 . . 3  |-  ( R 
FrSe  A  ->  Fun  U. C )
14 bnj60.4 . . . 4  |-  F  = 
U. C
1514funeqi 5214 . . 3  |-  ( Fun 
F  <->  Fun  U. C )
1613, 15sylibr 205 . 2  |-  ( R 
FrSe  A  ->  Fun  F
)
171, 2, 3, 14bnj1498 28140 . 2  |-  ( R 
FrSe  A  ->  dom  F  =  A )
1816, 17bnj1422 27919 1  |-  ( R 
FrSe  A  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2244   A.wral 2518   E.wrex 2519    i^i cin 3126    C_ wss 3127   <.cop 3617   U.cuni 3801   dom cdm 4661    |` cres 4663   Fun wfun 4667    Fn wfn 4668   ` cfv 4673    predc-bnj14 27762    FrSe w-bnj15 27766
This theorem is referenced by:  bnj1501  28146  bnj1523  28150
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-9v 1632  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-reg 7274  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-iota 6225  df-1o 6447  df-bnj17 27761  df-bnj14 27763  df-bnj13 27765  df-bnj15 27767  df-bnj18 27769  df-bnj19 27771
  Copyright terms: Public domain W3C validator