Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj865 Unicode version

Theorem bnj865 29004
Description: Technical lemma for bnj69 29089. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj865.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj865.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj865.3  |-  D  =  ( om  \  { (/)
} )
bnj865.5  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
bnj865.6  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
Assertion
Ref Expression
bnj865  |-  E. w A. n ( ch  ->  E. f  e.  w  th )
Distinct variable groups:    A, f,
i, n, y    w, A, f, n    D, f, i, n    w, D    R, f, i, n, y   
w, R    f, X, n, w    ph, w    ps, w
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    ch( y, w, f, i, n)    th( y, w, f, i, n)    D( y)    X( y, i)

Proof of Theorem bnj865
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bnj865.1 . . . . . . 7  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj865.2 . . . . . . 7  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj865.3 . . . . . . 7  |-  D  =  ( om  \  { (/)
} )
41, 2, 3bnj852 29002 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) )
5 omex 7558 . . . . . . . . 9  |-  om  e.  _V
6 difexg 4315 . . . . . . . . 9  |-  ( om  e.  _V  ->  ( om  \  { (/) } )  e.  _V )
75, 6ax-mp 8 . . . . . . . 8  |-  ( om 
\  { (/) } )  e.  _V
83, 7eqeltri 2478 . . . . . . 7  |-  D  e. 
_V
9 raleq 2868 . . . . . . . 8  |-  ( z  =  D  ->  ( A. n  e.  z  E! f ( f  Fn  n  /\  ph  /\  ps )  <->  A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
10 raleq 2868 . . . . . . . . 9  |-  ( z  =  D  ->  ( A. n  e.  z  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )  <->  A. n  e.  D  E. f  e.  w  (
f  Fn  n  /\  ph 
/\  ps ) ) )
1110exbidv 1633 . . . . . . . 8  |-  ( z  =  D  ->  ( E. w A. n  e.  z  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )  <->  E. w A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
129, 11imbi12d 312 . . . . . . 7  |-  ( z  =  D  ->  (
( A. n  e.  z  E! f ( f  Fn  n  /\  ph 
/\  ps )  ->  E. w A. n  e.  z  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
)  <->  ( A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )  ->  E. w A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) ) )
13 zfrep6 5931 . . . . . . 7  |-  ( A. n  e.  z  E! f ( f  Fn  n  /\  ph  /\  ps )  ->  E. w A. n  e.  z  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
)
148, 12, 13vtocl 2970 . . . . . 6  |-  ( A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps )  ->  E. w A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
)
154, 14syl 16 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. w A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )
16 19.37v 1918 . . . . 5  |-  ( E. w ( ( R 
FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. w A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) )
1715, 16mpbir 201 . . . 4  |-  E. w
( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )
18 df-ral 2675 . . . . . . . 8  |-  ( A. n  e.  D  E. f  e.  w  (
f  Fn  n  /\  ph 
/\  ps )  <->  A. n
( n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) )
1918imbi2i 304 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n
( n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) ) )
20 19.21v 1909 . . . . . . 7  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n
( n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) ) )
2119, 20bitr4i 244 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  A. n
( ( R  FrSe  A  /\  X  e.  A
)  ->  ( n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) ) )
2221exbii 1589 . . . . 5  |-  ( E. w ( ( R 
FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  E. w A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) ) )
23 impexp 434 . . . . . . . 8  |-  ( ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) ) )
24 df-3an 938 . . . . . . . . . 10  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D ) )
2524bicomi 194 . . . . . . . . 9  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D ) )
2625imbi1i 316 . . . . . . . 8  |-  ( ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
2723, 26bitr3i 243 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  ( n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )  <->  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
2827albii 1572 . . . . . 6  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) )  <->  A. n
( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
2928exbii 1589 . . . . 5  |-  ( E. w A. n ( ( R  FrSe  A  /\  X  e.  A
)  ->  ( n  e.  D  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )  <->  E. w A. n ( ( R 
FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
3022, 29bitri 241 . . . 4  |-  ( E. w ( ( R 
FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  E. w A. n ( ( R 
FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
3117, 30mpbi 200 . . 3  |-  E. w A. n ( ( R 
FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )
32 bnj865.5 . . . . . . 7  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
3332bicomi 194 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  <->  ch )
3433imbi1i 316 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ch  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) )
3534albii 1572 . . . 4  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  A. n
( ch  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
3635exbii 1589 . . 3  |-  ( E. w A. n ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) )  <->  E. w A. n ( ch  ->  E. f  e.  w  ( f  Fn  n  /\  ph 
/\  ps ) ) )
3731, 36mpbi 200 . 2  |-  E. w A. n ( ch  ->  E. f  e.  w  ( f  Fn  n  /\  ph 
/\  ps ) )
38 bnj865.6 . . . . . 6  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
3938rexbii 2695 . . . . 5  |-  ( E. f  e.  w  th  <->  E. f  e.  w  ( f  Fn  n  /\  ph 
/\  ps ) )
4039imbi2i 304 . . . 4  |-  ( ( ch  ->  E. f  e.  w  th )  <->  ( ch  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
4140albii 1572 . . 3  |-  ( A. n ( ch  ->  E. f  e.  w  th ) 
<-> 
A. n ( ch 
->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps )
) )
4241exbii 1589 . 2  |-  ( E. w A. n ( ch  ->  E. f  e.  w  th )  <->  E. w A. n ( ch  ->  E. f  e.  w  ( f  Fn  n  /\  ph  /\  ps ) ) )
4337, 42mpbir 201 1  |-  E. w A. n ( ch  ->  E. f  e.  w  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2258   A.wral 2670   E.wrex 2671   _Vcvv 2920    \ cdif 3281   (/)c0 3592   {csn 3778   U_ciun 4057   suc csuc 4547   omcom 4808    Fn wfn 5412   ` cfv 5417    predc-bnj14 28762    FrSe w-bnj15 28766
This theorem is referenced by:  bnj849  29006
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-reg 7520  ax-inf2 7556
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-1o 6687  df-bnj17 28761  df-bnj14 28763  df-bnj13 28765  df-bnj15 28767
  Copyright terms: Public domain W3C validator