Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj90 Unicode version

Theorem bnj90 28425
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj90.1  |-  Y  e. 
_V
Assertion
Ref Expression
bnj90  |-  ( [. Y  /  x ]. z  Fn  x  <->  z  Fn  Y
)
Distinct variable group:    x, z
Allowed substitution hints:    Y( x, z)

Proof of Theorem bnj90
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bnj90.1 . 2  |-  Y  e. 
_V
2 fneq2 5475 . . 3  |-  ( x  =  y  ->  (
z  Fn  x  <->  z  Fn  y ) )
3 fneq2 5475 . . 3  |-  ( y  =  Y  ->  (
z  Fn  y  <->  z  Fn  Y ) )
42, 3sbcie2g 3137 . 2  |-  ( Y  e.  _V  ->  ( [. Y  /  x ]. z  Fn  x  <->  z  Fn  Y ) )
51, 4ax-mp 8 1  |-  ( [. Y  /  x ]. z  Fn  x  <->  z  Fn  Y
)
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1717   _Vcvv 2899   [.wsbc 3104    Fn wfn 5389
This theorem is referenced by:  bnj121  28579  bnj130  28583  bnj207  28590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-sbc 3105  df-fn 5397
  Copyright terms: Public domain W3C validator