Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolysum Unicode version

Theorem bpolysum 26047
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Distinct variable groups:    k, N    k, X

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  NN0 )
2 nn0uz 10509 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2525 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  ( ZZ>= ` 
0 ) )
4 elfzelz 11048 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
5 bccl 11601 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
61, 4, 5syl2an 464 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  NN0 )
76nn0cnd 10265 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  CC )
8 elfznn0 11072 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9 simpr 448 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  X  e.  CC )
10 bpolycl 26046 . . . . . 6  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
118, 9, 10syl2anr 465 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( k BernPoly  X )  e.  CC )
12 fznn0sub 11074 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
1312adantl 453 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  -  k )  e. 
NN0 )
14 nn0p1nn 10248 . . . . . . 7  |-  ( ( N  -  k )  e.  NN0  ->  ( ( N  -  k )  +  1 )  e.  NN )
1513, 14syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  NN )
1615nncnd 10005 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  CC )
1715nnne0d 10033 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  =/=  0 )
1811, 16, 17divcld 9779 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( (
k BernPoly  X )  /  (
( N  -  k
)  +  1 ) )  e.  CC )
197, 18mulcld 9097 . . 3  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
20 oveq2 6080 . . . 4  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
21 oveq1 6079 . . . . 5  |-  ( k  =  N  ->  (
k BernPoly  X )  =  ( N BernPoly  X ) )
22 oveq2 6080 . . . . . 6  |-  ( k  =  N  ->  ( N  -  k )  =  ( N  -  N ) )
2322oveq1d 6087 . . . . 5  |-  ( k  =  N  ->  (
( N  -  k
)  +  1 )  =  ( ( N  -  N )  +  1 ) )
2421, 23oveq12d 6090 . . . 4  |-  ( k  =  N  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  =  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )
2520, 24oveq12d 6090 . . 3  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  =  ( ( N  _C  N
)  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) )
263, 19, 25fsumm1 12525 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) ) )
27 bcnn 11591 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
2827adantr 452 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  _C  N
)  =  1 )
29 nn0cn 10220 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  CC )
3029adantr 452 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  CC )
3130subidd 9388 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  -  N
)  =  0 )
3231oveq1d 6087 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  ( 0  +  1 ) )
33 0p1e1 10082 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3432, 33syl6eq 2483 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  1 )
3534oveq2d 6088 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( ( N BernPoly  X )  /  1 ) )
36 bpolycl 26046 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  e.  CC )
3736div1d 9771 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  1 )  =  ( N BernPoly  X )
)
3835, 37eqtrd 2467 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( N BernPoly  X )
)
3928, 38oveq12d 6090 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( 1  x.  ( N BernPoly  X )
) )
4036mulid2d 9095 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 1  x.  ( N BernPoly  X ) )  =  ( N BernPoly  X )
)
4139, 40eqtrd 2467 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( N BernPoly  X ) )
4241oveq2d 6088 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  +  ( N BernPoly  X ) ) )
43 bpolyval 26043 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
4443eqcomd 2440 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )
)
45 expcl 11387 . . . . 5  |-  ( ( X  e.  CC  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  CC )
4645ancoms 440 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( X ^ N
)  e.  CC )
47 fzfid 11300 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
48 fzssp1 11084 . . . . . . . 8  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
49 ax-1cn 9037 . . . . . . . . . 10  |-  1  e.  CC
50 npcan 9303 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5130, 49, 50sylancl 644 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5251oveq2d 6088 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
5348, 52syl5sseq 3388 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
5453sselda 3340 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  ( 0 ... N
) )
5554, 19syldan 457 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5647, 55fsumcl 12515 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5746, 56, 36subaddd 9418 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )  <->  (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) ) )
5844, 57mpbid 202 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) )
5926, 42, 583eqtrd 2471 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5445  (class class class)co 6072   CCcc 8977   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984    - cmin 9280    / cdiv 9666   NNcn 9989   NN0cn0 10210   ZZcz 10271   ZZ>=cuz 10477   ...cfz 11032   ^cexp 11370    _C cbc 11581   sum_csu 12467   BernPoly cbp 26040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-fac 11555  df-bc 11582  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-sum 12468  df-pred 25423  df-bpoly 26041
  Copyright terms: Public domain W3C validator