Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpolysum Structured version   Unicode version

Theorem bpolysum 26104
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Distinct variable groups:    k, N    k, X

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 445 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  NN0 )
2 nn0uz 10525 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2528 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  ( ZZ>= ` 
0 ) )
4 elfzelz 11064 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
5 bccl 11618 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
61, 4, 5syl2an 465 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  NN0 )
76nn0cnd 10281 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  CC )
8 elfznn0 11088 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
9 simpr 449 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  X  e.  CC )
10 bpolycl 26103 . . . . . 6  |-  ( ( k  e.  NN0  /\  X  e.  CC )  ->  ( k BernPoly  X )  e.  CC )
118, 9, 10syl2anr 466 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( k BernPoly  X )  e.  CC )
12 fznn0sub 11090 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  ( N  -  k )  e.  NN0 )
1312adantl 454 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( N  -  k )  e. 
NN0 )
14 nn0p1nn 10264 . . . . . . 7  |-  ( ( N  -  k )  e.  NN0  ->  ( ( N  -  k )  +  1 )  e.  NN )
1513, 14syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  NN )
1615nncnd 10021 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  e.  CC )
1715nnne0d 10049 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  1 )  =/=  0 )
1811, 16, 17divcld 9795 . . . 4  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( (
k BernPoly  X )  /  (
( N  -  k
)  +  1 ) )  e.  CC )
197, 18mulcld 9113 . . 3  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
20 oveq2 6092 . . . 4  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
21 oveq1 6091 . . . . 5  |-  ( k  =  N  ->  (
k BernPoly  X )  =  ( N BernPoly  X ) )
22 oveq2 6092 . . . . . 6  |-  ( k  =  N  ->  ( N  -  k )  =  ( N  -  N ) )
2322oveq1d 6099 . . . . 5  |-  ( k  =  N  ->  (
( N  -  k
)  +  1 )  =  ( ( N  -  N )  +  1 ) )
2421, 23oveq12d 6102 . . . 4  |-  ( k  =  N  ->  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) )  =  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )
2520, 24oveq12d 6102 . . 3  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  =  ( ( N  _C  N
)  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) )
263, 19, 25fsumm1 12542 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  (
( N  -  N
)  +  1 ) ) ) ) )
27 bcnn 11608 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
2827adantr 453 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  _C  N
)  =  1 )
29 nn0cn 10236 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  CC )
3029adantr 453 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  N  e.  CC )
3130subidd 9404 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N  -  N
)  =  0 )
3231oveq1d 6099 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  ( 0  +  1 ) )
33 0p1e1 10098 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3432, 33syl6eq 2486 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  -  N )  +  1 )  =  1 )
3534oveq2d 6100 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( ( N BernPoly  X )  /  1 ) )
36 bpolycl 26103 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  e.  CC )
3736div1d 9787 . . . . . 6  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  1 )  =  ( N BernPoly  X )
)
3835, 37eqtrd 2470 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) )  =  ( N BernPoly  X )
)
3928, 38oveq12d 6102 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( 1  x.  ( N BernPoly  X )
) )
4036mulid2d 9111 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 1  x.  ( N BernPoly  X ) )  =  ( N BernPoly  X )
)
4139, 40eqtrd 2470 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  _C  N )  x.  (
( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) )  =  ( N BernPoly  X ) )
4241oveq2d 6100 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( ( N  _C  N )  x.  ( ( N BernPoly  X )  /  ( ( N  -  N )  +  1 ) ) ) )  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) )  +  ( N BernPoly  X ) ) )
43 bpolyval 26100 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
4443eqcomd 2443 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )
)
45 expcl 11404 . . . . 5  |-  ( ( X  e.  CC  /\  N  e.  NN0 )  -> 
( X ^ N
)  e.  CC )
4645ancoms 441 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( X ^ N
)  e.  CC )
47 fzfid 11317 . . . . 5  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
48 fzssp1 11100 . . . . . . . 8  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
49 ax-1cn 9053 . . . . . . . . . 10  |-  1  e.  CC
50 npcan 9319 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5130, 49, 50sylancl 645 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
5251oveq2d 6100 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
5348, 52syl5sseq 3398 . . . . . . 7  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
5453sselda 3350 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  ( 0 ... N
) )
5554, 19syldan 458 . . . . 5  |-  ( ( ( N  e.  NN0  /\  X  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( ( N  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5647, 55fsumcl 12532 . . . 4  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  e.  CC )
5746, 56, 36subaddd 9434 . . 3  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) )  =  ( N BernPoly  X )  <->  (
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) ) )
5844, 57mpbid 203 . 2  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  +  ( N BernPoly  X ) )  =  ( X ^ N ) )
5926, 42, 583eqtrd 2474 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( k BernPoly  X )  /  ( ( N  -  k )  +  1 ) ) )  =  ( X ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   ` cfv 5457  (class class class)co 6084   CCcc 8993   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    - cmin 9296    / cdiv 9682   NNcn 10005   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048   ^cexp 11387    _C cbc 11598   sum_csu 12484   BernPoly cbp 26097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-pred 25444  df-wrecs 25536  df-bpoly 26098
  Copyright terms: Public domain W3C validator