MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpos Unicode version

Theorem bpos 20527
Description: Bertrand's postulate: there is a prime between  N and  2 N for every positive integer  N. This proof follows Erdős's method, for the most part, but with some refinements due to Shigenori Tochiori to save us some calculations of large primes. See http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate for an overview of the proof strategy. (Contributed by Mario Carneiro, 14-Mar-2014.)
Assertion
Ref Expression
bpos  |-  ( N  e.  NN  ->  E. p  e.  Prime  ( N  < 
p  /\  p  <_  ( 2  x.  N ) ) )
Distinct variable group:    N, p

Proof of Theorem bpos
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bpos1 20517 . 2  |-  ( ( N  e.  NN  /\  N  <_ ; 6 4 )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
2 eqid 2283 . . . . 5  |-  ( n  e.  NN  |->  ( ( ( ( sqr `  2
)  x.  ( ( x  e.  RR+  |->  ( ( log `  x )  /  x ) ) `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  (
( x  e.  RR+  |->  ( ( log `  x
)  /  x ) ) `  ( n  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) ) ) )  =  ( n  e.  NN  |->  ( ( ( ( sqr `  2
)  x.  ( ( x  e.  RR+  |->  ( ( log `  x )  /  x ) ) `
 ( sqr `  n
) ) )  +  ( ( 9  / 
4 )  x.  (
( x  e.  RR+  |->  ( ( log `  x
)  /  x ) ) `  ( n  /  2 ) ) ) )  +  ( ( log `  2
)  /  ( sqr `  ( 2  x.  n
) ) ) ) )
3 eqid 2283 . . . . 5  |-  ( x  e.  RR+  |->  ( ( log `  x )  /  x ) )  =  ( x  e.  RR+  |->  ( ( log `  x )  /  x
) )
4 simpll 730 . . . . 5  |-  ( ( ( N  e.  NN  /\ ; 6
4  <  N )  /\  -.  E. p  e. 
Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )  ->  N  e.  NN )
5 simplr 731 . . . . 5  |-  ( ( ( N  e.  NN  /\ ; 6
4  <  N )  /\  -.  E. p  e. 
Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )  -> ; 6 4  <  N
)
6 simpr 447 . . . . 5  |-  ( ( ( N  e.  NN  /\ ; 6
4  <  N )  /\  -.  E. p  e. 
Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )  ->  -.  E. p  e.  Prime  ( N  < 
p  /\  p  <_  ( 2  x.  N ) ) )
72, 3, 4, 5, 6bposlem9 20526 . . . 4  |-  ( ( ( N  e.  NN  /\ ; 6
4  <  N )  /\  -.  E. p  e. 
Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )  ->  E. p  e.  Prime  ( N  < 
p  /\  p  <_  ( 2  x.  N ) ) )
87ex 423 . . 3  |-  ( ( N  e.  NN  /\ ; 6 4  <  N )  -> 
( -.  E. p  e.  Prime  ( N  < 
p  /\  p  <_  ( 2  x.  N ) )  ->  E. p  e.  Prime  ( N  < 
p  /\  p  <_  ( 2  x.  N ) ) ) )
98pm2.18d 103 . 2  |-  ( ( N  e.  NN  /\ ; 6 4  <  N )  ->  E. p  e.  Prime  ( N  <  p  /\  p  <_  ( 2  x.  N ) ) )
10 nnre 9748 . . 3  |-  ( N  e.  NN  ->  N  e.  RR )
11 6nn0 9981 . . . . 5  |-  6  e.  NN0
12 4nn0 9979 . . . . 5  |-  4  e.  NN0
1311, 12deccl 10133 . . . 4  |- ; 6 4  e.  NN0
1413nn0rei 9971 . . 3  |- ; 6 4  e.  RR
15 lelttric 8922 . . 3  |-  ( ( N  e.  RR  /\ ; 6 4  e.  RR )  -> 
( N  <_ ; 6 4  \/ ; 6 4  <  N
) )
1610, 14, 15sylancl 643 . 2  |-  ( N  e.  NN  ->  ( N  <_ ; 6 4  \/ ; 6 4  <  N
) )
171, 9, 16mpjaodan 761 1  |-  ( N  e.  NN  ->  E. p  e.  Prime  ( N  < 
p  /\  p  <_  ( 2  x.  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    e. wcel 1684   E.wrex 2544   class class class wbr 4023    e. cmpt 4077   ` cfv 5220  (class class class)co 5819   RRcr 8731    + caddc 8735    x. cmul 8737    < clt 8862    <_ cle 8863    / cdiv 9418   NNcn 9741   2c2 9790   4c4 9792   6c6 9794   9c9 9797  ;cdc 10119   RR+crp 10349   sqrcsqr 11713   Primecprime 12753   logclog 19907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10655  df-ioc 10656  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-fac 11284  df-bc 11311  df-hash 11333  df-shft 11557  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-limsup 11940  df-clim 11957  df-rlim 11958  df-sum 12154  df-ef 12344  df-e 12345  df-sin 12346  df-cos 12347  df-pi 12349  df-dvds 12527  df-gcd 12681  df-prm 12754  df-pc 12885  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-lp 16863  df-perf 16864  df-cn 16952  df-cnp 16953  df-haus 17038  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-limc 19211  df-dv 19212  df-log 19909  df-cxp 19910  df-cht 20329  df-ppi 20332
  Copyright terms: Public domain W3C validator