HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Unicode version

Theorem branmfn 22687
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  (
normh `  A ) )

Proof of Theorem branmfn
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5527 . . . 4  |-  ( A  =  0h  ->  ( bra `  A )  =  ( bra `  0h ) )
21fveq2d 5531 . . 3  |-  ( A  =  0h  ->  ( normfn `
 ( bra `  A
) )  =  (
normfn `  ( bra `  0h ) ) )
3 fveq2 5527 . . 3  |-  ( A  =  0h  ->  ( normh `  A )  =  ( normh `  0h )
)
42, 3eqeq12d 2299 . 2  |-  ( A  =  0h  ->  (
( normfn `  ( bra `  A ) )  =  ( normh `  A )  <->  (
normfn `  ( bra `  0h ) )  =  (
normh `  0h ) ) )
5 brafn 22529 . . . . 5  |-  ( A  e.  ~H  ->  ( bra `  A ) : ~H --> CC )
6 nmfnval 22458 . . . . 5  |-  ( ( bra `  A ) : ~H --> CC  ->  (
normfn `  ( bra `  A
) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
75, 6syl 15 . . . 4  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
87adantr 451 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  ( bra `  A ) )  =  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } ,  RR* ,  <  ) )
9 nmfnsetre 22459 . . . . . . . 8  |-  ( ( bra `  A ) : ~H --> CC  ->  { x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } 
C_  RR )
105, 9syl 15 . . . . . . 7  |-  ( A  e.  ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR )
11 ressxr 8878 . . . . . . 7  |-  RR  C_  RR*
1210, 11syl6ss 3193 . . . . . 6  |-  ( A  e.  ~H  ->  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* )
13 normcl 21706 . . . . . . 7  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
1413rexrd 8883 . . . . . 6  |-  ( A  e.  ~H  ->  ( normh `  A )  e. 
RR* )
1512, 14jca 518 . . . . 5  |-  ( A  e.  ~H  ->  ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )
)
1615adantr 451 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )
)
17 vex 2793 . . . . . . . 8  |-  z  e. 
_V
18 eqeq1 2291 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  =  ( abs `  ( ( bra `  A
) `  y )
)  <->  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) )
1918anbi2d 684 . . . . . . . . 9  |-  ( x  =  z  ->  (
( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) ) )
2019rexbidv 2566 . . . . . . . 8  |-  ( x  =  z  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( abs `  ( ( bra `  A ) `  y
) ) ) ) )
2117, 20elab 2916 . . . . . . 7  |-  ( z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  z  =  ( abs `  ( ( bra `  A ) `  y
) ) ) )
22 id 19 . . . . . . . . . . . . 13  |-  ( z  =  ( abs `  (
( bra `  A
) `  y )
)  ->  z  =  ( abs `  ( ( bra `  A ) `
 y ) ) )
23 braval 22526 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( bra `  A
) `  y )  =  ( y  .ih  A ) )
2423fveq2d 5531 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( bra `  A
) `  y )
)  =  ( abs `  ( y  .ih  A
) ) )
2524adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( ( bra `  A ) `  y
) )  =  ( abs `  ( y 
.ih  A ) ) )
2622, 25sylan9eqr 2339 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  z  =  ( abs `  (
y  .ih  A )
) )
27 bcs2 21763 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  A  e.  ~H  /\  ( normh `  y )  <_ 
1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
28273expa 1151 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ~H  /\  A  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
2928ancom1s 780 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_  1 )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
3029adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  ( abs `  ( y  .ih  A ) )  <_  ( normh `  A ) )
3126, 30eqbrtrd 4045 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
~H  /\  y  e.  ~H )  /\  ( normh `  y )  <_ 
1 )  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
)
3231exp41 593 . . . . . . . . . 10  |-  ( A  e.  ~H  ->  (
y  e.  ~H  ->  ( ( normh `  y )  <_  1  ->  ( z  =  ( abs `  (
( bra `  A
) `  y )
)  ->  z  <_  (
normh `  A ) ) ) ) )
3332imp4a 572 . . . . . . . . 9  |-  ( A  e.  ~H  ->  (
y  e.  ~H  ->  ( ( ( normh `  y
)  <_  1  /\  z  =  ( abs `  ( ( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
) ) )
3433rexlimdv 2668 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  z  =  ( abs `  ( ( bra `  A
) `  y )
) )  ->  z  <_  ( normh `  A )
) )
3534imp 418 . . . . . . 7  |-  ( ( A  e.  ~H  /\  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  z  =  ( abs `  (
( bra `  A
) `  y )
) ) )  -> 
z  <_  ( normh `  A ) )
3621, 35sylan2b 461 . . . . . 6  |-  ( ( A  e.  ~H  /\  z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } )  ->  z  <_  ( normh `  A ) )
3736ralrimiva 2628 . . . . 5  |-  ( A  e.  ~H  ->  A. z  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
) )
3837adantr 451 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A. z  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
) )
3913recnd 8863 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  CC )
4039adantr 451 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  CC )
41 normne0 21711 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  (
( normh `  A )  =/=  0  <->  A  =/=  0h )
)
4241biimpar 471 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =/=  0 )
4340, 42reccld 9531 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  CC )
44 simpl 443 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A  e.  ~H )
45 hvmulcl 21595 . . . . . . . . . . . 12  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H )  ->  (
( 1  /  ( normh `  A ) )  .h  A )  e. 
~H )
4643, 44, 45syl2anc 642 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H )
47 norm1 21830 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  =  1 )
48 1le1 9398 . . . . . . . . . . . 12  |-  1  <_  1
4947, 48syl6eqbr 4062 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1 )
50 ax-his3 21665 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  ( normh `  A ) )  e.  CC  /\  A  e.  ~H  /\  A  e. 
~H )  ->  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A )  =  ( ( 1  / 
( normh `  A )
)  x.  ( A 
.ih  A ) ) )
5143, 44, 44, 50syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )  =  ( ( 1  /  ( normh `  A
) )  x.  ( A  .ih  A ) ) )
5213adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  RR )
5352, 42rereccld 9589 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( 1  /  ( normh `  A ) )  e.  RR )
54 hiidrcl 21676 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  ( A  .ih  A )  e.  RR )
5554adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( A  .ih  A
)  e.  RR )
5653, 55remulcld 8865 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( A 
.ih  A ) )  e.  RR )
5751, 56eqeltrd 2359 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )  e.  RR )
58 normgt0 21708 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ~H  ->  ( A  =/=  0h  <->  0  <  (
normh `  A ) ) )
5958biimpa 470 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( normh `  A ) )
6052, 59recgt0d 9693 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <  ( 1  /  ( normh `  A
) ) )
61 0re 8840 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
62 ltle 8912 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  ( 1  /  ( normh `  A ) )  e.  RR )  -> 
( 0  <  (
1  /  ( normh `  A ) )  -> 
0  <_  ( 1  /  ( normh `  A
) ) ) )
6361, 62mpan 651 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  ( normh `  A ) )  e.  RR  ->  ( 0  <  ( 1  / 
( normh `  A )
)  ->  0  <_  ( 1  /  ( normh `  A ) ) ) )
6453, 60, 63sylc 56 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( 1  /  ( normh `  A
) ) )
65 hiidge0 21679 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  0  <_  ( A  .ih  A
) )
6665adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( A  .ih  A ) )
6753, 55, 64, 66mulge0d 9351 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( (
1  /  ( normh `  A ) )  x.  ( A  .ih  A
) ) )
6867, 51breqtrrd 4051 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
0  <_  ( (
( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) )
6957, 68absidd 11907 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) )  =  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A
) )
7040, 42recid2d 9534 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( normh `  A ) )  =  1 )
7170oveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( normh `  A )  x.  1 ) )
7240, 43, 40mul12d 9023 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( ( normh `  A )  x.  ( normh `  A ) ) ) )
7339sqvald 11244 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ~H  ->  (
( normh `  A ) ^ 2 )  =  ( ( normh `  A
)  x.  ( normh `  A ) ) )
74 normsq 21715 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ~H  ->  (
( normh `  A ) ^ 2 )  =  ( A  .ih  A
) )
7573, 74eqtr3d 2319 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ~H  ->  (
( normh `  A )  x.  ( normh `  A )
)  =  ( A 
.ih  A ) )
7675adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( normh `  A ) )  =  ( A  .ih  A
) )
7776oveq2d 5876 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( 1  / 
( normh `  A )
)  x.  ( (
normh `  A )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( A  .ih  A ) ) )
7872, 77eqtrd 2317 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  ( ( 1  /  ( normh `  A ) )  x.  ( normh `  A )
) )  =  ( ( 1  /  ( normh `  A ) )  x.  ( A  .ih  A ) ) )
7939mulid1d 8854 . . . . . . . . . . . . . 14  |-  ( A  e.  ~H  ->  (
( normh `  A )  x.  1 )  =  (
normh `  A ) )
8079adantr 451 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( ( normh `  A
)  x.  1 )  =  ( normh `  A
) )
8171, 78, 803eqtr3rd 2326 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =  ( ( 1  /  ( normh `  A
) )  x.  ( A  .ih  A ) ) )
8251, 69, 813eqtr4rd 2328 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  =  ( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) ) )
83 fveq2 5527 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( normh `  y )  =  (
normh `  ( ( 1  /  ( normh `  A
) )  .h  A
) ) )
8483breq1d 4035 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( ( normh `  y )  <_ 
1  <->  ( normh `  (
( 1  /  ( normh `  A ) )  .h  A ) )  <_  1 ) )
85 oveq1 5867 . . . . . . . . . . . . . . 15  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( y  .ih  A )  =  ( ( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) )
8685fveq2d 5531 . . . . . . . . . . . . . 14  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( abs `  ( y  .ih  A
) )  =  ( abs `  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) ) )
8786eqeq2d 2296 . . . . . . . . . . . . 13  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( ( normh `  A )  =  ( abs `  (
y  .ih  A )
)  <->  ( normh `  A
)  =  ( abs `  ( ( ( 1  /  ( normh `  A
) )  .h  A
)  .ih  A )
) ) )
8884, 87anbi12d 691 . . . . . . . . . . . 12  |-  ( y  =  ( ( 1  /  ( normh `  A
) )  .h  A
)  ->  ( (
( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  ( y 
.ih  A ) ) )  <->  ( ( normh `  ( ( 1  / 
( normh `  A )
)  .h  A ) )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( ( 1  / 
( normh `  A )
)  .h  A ) 
.ih  A ) ) ) ) )
8988rspcev 2886 . . . . . . . . . . 11  |-  ( ( ( ( 1  / 
( normh `  A )
)  .h  A )  e.  ~H  /\  (
( normh `  ( (
1  /  ( normh `  A ) )  .h  A ) )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( ( ( 1  /  ( normh `  A ) )  .h  A )  .ih  A ) ) ) )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) )
9046, 49, 82, 89syl12anc 1180 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) )
9124eqeq2d 2296 . . . . . . . . . . . . 13  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  A
)  =  ( abs `  ( ( bra `  A
) `  y )
)  <->  ( normh `  A
)  =  ( abs `  ( y  .ih  A
) ) ) )
9291anbi2d 684 . . . . . . . . . . . 12  |-  ( ( A  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( y 
.ih  A ) ) ) ) )
9392rexbidva 2562 . . . . . . . . . . 11  |-  ( A  e.  ~H  ->  ( E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) ) )
9493adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( E. y  e. 
~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
y  .ih  A )
) ) ) )
9590, 94mpbird 223 . . . . . . . . 9  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) )
96 fvex 5541 . . . . . . . . . 10  |-  ( normh `  A )  e.  _V
97 eqeq1 2291 . . . . . . . . . . . 12  |-  ( x  =  ( normh `  A
)  ->  ( x  =  ( abs `  (
( bra `  A
) `  y )
)  <->  ( normh `  A
)  =  ( abs `  ( ( bra `  A
) `  y )
) ) )
9897anbi2d 684 . . . . . . . . . . 11  |-  ( x  =  ( normh `  A
)  ->  ( (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  ( ( normh `  y )  <_ 
1  /\  ( normh `  A )  =  ( abs `  ( ( bra `  A ) `
 y ) ) ) ) )
9998rexbidv 2566 . . . . . . . . . 10  |-  ( x  =  ( normh `  A
)  ->  ( E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) )  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) ) )
10096, 99elab 2916 . . . . . . . . 9  |-  ( (
normh `  A )  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  <->  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  ( normh `  A )  =  ( abs `  (
( bra `  A
) `  y )
) ) )
10195, 100sylibr 203 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normh `  A )  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } )
102 breq2 4029 . . . . . . . . 9  |-  ( w  =  ( normh `  A
)  ->  ( z  <  w  <->  z  <  ( normh `  A ) ) )
103102rspcev 2886 . . . . . . . 8  |-  ( ( ( normh `  A )  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) }  /\  z  <  ( normh `  A
) )  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <  w )
104101, 103sylan 457 . . . . . . 7  |-  ( ( ( A  e.  ~H  /\  A  =/=  0h )  /\  z  <  ( normh `  A ) )  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <  w )
105104adantlr 695 . . . . . 6  |-  ( ( ( ( A  e. 
~H  /\  A  =/=  0h )  /\  z  e.  RR )  /\  z  <  ( normh `  A )
)  ->  E. w  e.  { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <  w )
106105ex 423 . . . . 5  |-  ( ( ( A  e.  ~H  /\  A  =/=  0h )  /\  z  e.  RR )  ->  ( z  < 
( normh `  A )  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } z  <  w ) )
107106ralrimiva 2628 . . . 4  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  A. z  e.  RR  ( z  <  ( normh `  A )  ->  E. w  e.  { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } z  <  w ) )
108 supxr2 10634 . . . 4  |-  ( ( ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) }  C_  RR* 
/\  ( normh `  A
)  e.  RR* )  /\  ( A. z  e. 
{ x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } z  <_  ( normh `  A
)  /\  A. z  e.  RR  ( z  < 
( normh `  A )  ->  E. w  e.  {
x  |  E. y  e.  ~H  ( ( normh `  y )  <_  1  /\  x  =  ( abs `  ( ( bra `  A ) `  y
) ) ) } z  <  w ) ) )  ->  sup ( { x  |  E. y  e.  ~H  (
( normh `  y )  <_  1  /\  x  =  ( abs `  (
( bra `  A
) `  y )
) ) } ,  RR* ,  <  )  =  ( normh `  A )
)
10916, 38, 107, 108syl12anc 1180 . . 3  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  ->  sup ( { x  |  E. y  e.  ~H  ( ( normh `  y
)  <_  1  /\  x  =  ( abs `  ( ( bra `  A
) `  y )
) ) } ,  RR* ,  <  )  =  ( normh `  A )
)
1108, 109eqtrd 2317 . 2  |-  ( ( A  e.  ~H  /\  A  =/=  0h )  -> 
( normfn `  ( bra `  A ) )  =  ( normh `  A )
)
111 nmfn0 22569 . . . 4  |-  ( normfn `  ( ~H  X.  {
0 } ) )  =  0
112 bra0 22532 . . . . 5  |-  ( bra `  0h )  =  ( ~H  X.  { 0 } )
113112fveq2i 5530 . . . 4  |-  ( normfn `  ( bra `  0h ) )  =  (
normfn `  ( ~H  X.  { 0 } ) )
114 norm0 21709 . . . 4  |-  ( normh `  0h )  =  0
115111, 113, 1143eqtr4i 2315 . . 3  |-  ( normfn `  ( bra `  0h ) )  =  (
normh `  0h )
116115a1i 10 . 2  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  0h ) )  =  (
normh `  0h ) )
1174, 110, 116pm2.61ne 2523 1  |-  ( A  e.  ~H  ->  ( normfn `
 ( bra `  A
) )  =  (
normh `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   {cab 2271    =/= wne 2448   A.wral 2545   E.wrex 2546    C_ wss 3154   {csn 3642   class class class wbr 4025    X. cxp 4689   -->wf 5253   ` cfv 5257  (class class class)co 5860   supcsup 7195   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    x. cmul 8744   RR*cxr 8868    < clt 8869    <_ cle 8870    / cdiv 9425   2c2 9797   ^cexp 11106   abscabs 11721   ~Hchil 21501    .h csm 21503    .ih csp 21504   normhcno 21505   0hc0v 21506   normfncnmf 21533   bracbr 21538
This theorem is referenced by:  brabn  22688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819  ax-hilex 21581  ax-hfvadd 21582  ax-hvcom 21583  ax-hvass 21584  ax-hv0cl 21585  ax-hvaddid 21586  ax-hfvmul 21587  ax-hvmulid 21588  ax-hvmulass 21589  ax-hvdistr1 21590  ax-hvdistr2 21591  ax-hvmul0 21592  ax-hfi 21660  ax-his1 21663  ax-his2 21664  ax-his3 21665  ax-his4 21666
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-icc 10665  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-cn 16959  df-cnp 16960  df-t1 17044  df-haus 17045  df-tx 17259  df-hmeo 17448  df-xms 17887  df-ms 17888  df-tms 17889  df-grpo 20860  df-gid 20861  df-ginv 20862  df-gdiv 20863  df-ablo 20951  df-vc 21104  df-nv 21150  df-va 21153  df-ba 21154  df-sm 21155  df-0v 21156  df-vs 21157  df-nmcv 21158  df-ims 21159  df-dip 21276  df-ph 21393  df-hnorm 21550  df-hba 21551  df-hvsub 21553  df-nmfn 22427  df-lnfn 22430  df-bra 22432
  Copyright terms: Public domain W3C validator