Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof3 Structured version   Unicode version

Theorem broutsideof3 26052
Description: Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) ) ) )
Distinct variable groups:    N, c    A, c    B, c    P, c

Proof of Theorem broutsideof3
StepHypRef Expression
1 broutsideof2 26048 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
2 simpl 444 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  N  e.  NN )
3 simpr3 965 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
4 simpr1 963 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  P  e.  ( EE `  N ) )
5 btwndiff 25953 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  B  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) )
62, 3, 4, 5syl3anc 1184 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. c  e.  ( EE `  N ) ( P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )
76adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) )
8 df-3an 938 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  <->  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) ) )
9 3anass 940 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c )  <->  ( (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. )  /\  ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) ) )
10 simpr3 965 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  =/=  c )
1110necomd 2681 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  -> 
c  =/=  P )
12 simp1 957 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
13 simp23 992 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
14 simp22 991 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
15 simp21 990 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
16 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
17 simpr1r 1015 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  A  Btwn  <. P ,  B >. )
1812, 14, 15, 13, 17btwncomand 25941 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  A  Btwn  <. B ,  P >. )
19 simpr2 964 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. B ,  c
>. )
2012, 13, 14, 15, 16, 18, 19btwnexch3and 25947 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. A ,  c
>. )
2111, 20, 193jca 1134 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  P  Btwn  <. B , 
c >.  /\  P  =/=  c ) )  -> 
( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) )
228, 9, 21syl2anbr 467 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  A  Btwn  <. P ,  B >. )  /\  ( P  Btwn  <. B ,  c >.  /\  P  =/=  c ) ) )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )
2322expr 599 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( ( P  Btwn  <. B ,  c
>.  /\  P  =/=  c
)  ->  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
2423an32s 780 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  /\  c  e.  ( EE `  N
) )  ->  (
( P  Btwn  <. B , 
c >.  /\  P  =/=  c )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
2524reximdva 2810 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( E. c  e.  ( EE `  N ) ( P 
Btwn  <. B ,  c
>.  /\  P  =/=  c
)  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
267, 25mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) )
2726expr 599 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( A  Btwn  <. P ,  B >.  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
28 simpr2 964 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
29 btwndiff 25953 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) )
302, 28, 4, 29syl3anc 1184 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  ->  E. c  e.  ( EE `  N ) ( P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )
3130adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  E. c  e.  ( EE `  N
) ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) )
32 3anass 940 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c )  <->  ( (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) ) )
33 simpr3 965 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  =/=  c )
3433necomd 2681 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  -> 
c  =/=  P )
35 simpr2 964 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. A ,  c
>. )
36 simpr1r 1015 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  B  Btwn  <. P ,  A >. )
3712, 13, 15, 14, 36btwncomand 25941 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  B  Btwn  <. A ,  P >. )
3812, 14, 13, 15, 16, 37, 35btwnexch3and 25947 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  ->  P  Btwn  <. B ,  c
>. )
3934, 35, 383jca 1134 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  P  Btwn  <. A , 
c >.  /\  P  =/=  c ) )  -> 
( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) )
408, 32, 39syl2anbr 467 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( ( A  =/= 
P  /\  B  =/=  P )  /\  B  Btwn  <. P ,  A >. )  /\  ( P  Btwn  <. A ,  c >.  /\  P  =/=  c ) ) )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )
4140expr 599 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( ( P  Btwn  <. A ,  c
>.  /\  P  =/=  c
)  ->  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4241an32s 780 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  /\  c  e.  ( EE `  N
) )  ->  (
( P  Btwn  <. A , 
c >.  /\  P  =/=  c )  ->  (
c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
4342reximdva 2810 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( E. c  e.  ( EE `  N ) ( P 
Btwn  <. A ,  c
>.  /\  P  =/=  c
)  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4431, 43mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) )
4544expr 599 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( B  Btwn  <. P ,  A >.  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
4627, 45jaod 370 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
47 simprr1 1005 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  c  =/=  P
)
48 simpll 731 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
49 simplr1 999 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
50 simplr2 1000 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
51 simpr 448 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
52 simprr2 1006 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. A , 
c >. )
5348, 49, 50, 51, 52btwncomand 25941 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. c ,  A >. )
54 simplr3 1001 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
55 simprr3 1007 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. B , 
c >. )
5648, 49, 54, 51, 55btwncomand 25941 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  P  Btwn  <. c ,  B >. )
57 btwnconn2 26028 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( c  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <.
c ,  A >.  /\  P  Btwn  <. c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
5848, 51, 49, 50, 54, 57syl122anc 1193 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  ->  (
( c  =/=  P  /\  P  Btwn  <. c ,  A >.  /\  P  Btwn  <.
c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
5958adantr 452 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  ( ( c  =/=  P  /\  P  Btwn  <. c ,  A >.  /\  P  Btwn  <. c ,  B >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6047, 53, 56, 59mp3and 1282 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  (
( A  =/=  P  /\  B  =/=  P
)  /\  ( c  =/=  P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )
6160expr 599 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  c  e.  ( EE `  N
) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6261an32s 780 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  /\  c  e.  ( EE `  N ) )  -> 
( ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6362rexlimdva 2822 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. )  ->  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
6446, 63impbid 184 . . . 4  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  /\  ( A  =/=  P  /\  B  =/=  P ) )  -> 
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  <->  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) )
6564pm5.32da 623 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) ) )
66 df-3an 938 . . 3  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
67 df-3an 938 . . 3  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A ,  c
>.  /\  P  Btwn  <. B , 
c >. ) ) )
6865, 66, 673bitr4g 280 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  =/= 
P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( A  =/=  P  /\  B  =/= 
P  /\  E. c  e.  ( EE `  N
) ( c  =/= 
P  /\  P  Btwn  <. A ,  c >.  /\  P  Btwn  <. B , 
c >. ) ) ) )
691, 68bitrd 245 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  E. c  e.  ( EE `  N ) ( c  =/=  P  /\  P  Btwn  <. A , 
c >.  /\  P  Btwn  <. B ,  c >. ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    e. wcel 1725    =/= wne 2598   E.wrex 2698   <.cop 3809   class class class wbr 4204   ` cfv 5446   NNcn 9992   EEcee 25819    Btwn cbtwn 25820  OutsideOfcoutsideof 26045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-ee 25822  df-btwn 25823  df-cgr 25824  df-ofs 25909  df-ifs 25965  df-cgr3 25966  df-colinear 25967  df-fs 25968  df-outsideof 26046
  Copyright terms: Public domain W3C validator