Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle2 Unicode version

Theorem brsegle2 24140
Description: Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) ) )
Distinct variable groups:    x, N    x, A    x, B    x, C    x, D
Dummy variable  y is distinct from all other variables.

Proof of Theorem brsegle2
StepHypRef Expression
1 brsegle 24139 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
2 simprl 734 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  y  Btwn  <. C ,  D >. )
3 simpl1 960 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  ->  N  e.  NN )
4 simpl3l 1012 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
5 simpl3r 1013 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
6 simpr 449 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  -> 
y  e.  ( EE
`  N ) )
7 btwncolinear2 24101 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  y  e.  ( EE `  N
) ) )  -> 
( y  Btwn  <. C ,  D >.  ->  C  Colinear  <. y ,  D >. ) )
83, 4, 5, 6, 7syl13anc 1186 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  -> 
( y  Btwn  <. C ,  D >.  ->  C  Colinear  <. y ,  D >. ) )
98adantr 453 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  (
y  Btwn  <. C ,  D >.  ->  C  Colinear  <. y ,  D >. ) )
102, 9mpd 16 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  C  Colinear  <.
y ,  D >. )
11 simpl2l 1010 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
12 simpl2r 1011 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
13 simprr 735 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  <. A ,  B >.Cgr <. C ,  y
>. )
143, 11, 12, 4, 6, 13cgrcomand 24022 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  <. C , 
y >.Cgr <. A ,  B >. )
15 simpl2 961 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  -> 
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
16 lineext 24107 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( C  Colinear  <. y ,  D >.  /\  <. C ,  y >.Cgr <. A ,  B >. )  ->  E. x  e.  ( EE `  N
) <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.
) )
173, 4, 6, 5, 15, 16syl131anc 1197 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  -> 
( ( C  Colinear  <. y ,  D >.  /\  <. C ,  y >.Cgr <. A ,  B >. )  ->  E. x  e.  ( EE `  N
) <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.
) )
1817adantr 453 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  (
( C  Colinear  <. y ,  D >.  /\  <. C , 
y >.Cgr <. A ,  B >. )  ->  E. x  e.  ( EE `  N
) <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.
) )
1910, 14, 18mp2and 662 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  E. x  e.  ( EE `  N
) <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.
)
20 an32 775 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  x  e.  ( EE `  N ) )  <->  ( (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) ) )
21 simpll1 996 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  ->  N  e.  NN )
22 simpl3l 1012 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
2322adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
24 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
y  e.  ( EE
`  N ) )
25 simpl3r 1013 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
2625adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
27 simpl2l 1010 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
2827adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
29 simpl2r 1011 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
3029adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
31 simplr 733 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
32 brcgr3 24077 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  x  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  <->  ( <. C ,  y >.Cgr <. A ,  B >.  /\  <. C ,  D >.Cgr <. A ,  x >.  /\  <. y ,  D >.Cgr
<. B ,  x >. ) ) )
3321, 23, 24, 26, 28, 30, 31, 32syl133anc 1207 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  <->  (
<. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) ) )
3433adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  <->  ( <. C ,  y >.Cgr <. A ,  B >.  /\  <. C ,  D >.Cgr <. A ,  x >.  /\  <. y ,  D >.Cgr
<. B ,  x >. ) ) )
35 simp2l 983 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  y  Btwn  <. C ,  D >. )
36 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  ( <. C ,  y >.Cgr <. A ,  B >.  /\  <. C ,  D >.Cgr <. A ,  x >.  /\  <. y ,  D >.Cgr
<. B ,  x >. ) )
37333ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  <->  ( <. C ,  y >.Cgr <. A ,  B >.  /\  <. C ,  D >.Cgr <. A ,  x >.  /\  <. y ,  D >.Cgr
<. B ,  x >. ) ) )
3836, 37mpbird 225 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >. )
39 btwnxfr 24087 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  x  e.  ( EE `  N ) ) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >. )  ->  B  Btwn  <. A ,  x >. ) )
4021, 23, 24, 26, 28, 30, 31, 39syl133anc 1207 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >. )  ->  B  Btwn  <. A ,  x >. ) )
41403ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  ( (
y  Btwn  <. C ,  D >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >. )  ->  B  Btwn  <. A ,  x >. ) )
4235, 38, 41mp2and 662 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  B  Btwn  <. A ,  x >. )
43 simp32 994 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  <. C ,  D >.Cgr <. A ,  x >. )
44 cgrcom 24021 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.Cgr <. A ,  x >.  <->  <. A ,  x >.Cgr <. C ,  D >. ) )
4521, 23, 26, 28, 31, 44syl122anc 1193 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( <. C ,  D >.Cgr
<. A ,  x >.  <->  <. A ,  x >.Cgr <. C ,  D >. ) )
46453ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  ( <. C ,  D >.Cgr <. A ,  x >. 
<-> 
<. A ,  x >.Cgr <. C ,  D >. ) )
4743, 46mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  <. A ,  x >.Cgr <. C ,  D >. )
4842, 47jca 520 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( <. C ,  y >.Cgr <. A ,  B >.  /\ 
<. C ,  D >.Cgr <. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. ) )  ->  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr
<. C ,  D >. ) )
49483expia 1155 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  (
( <. C ,  y
>.Cgr <. A ,  B >.  /\  <. C ,  D >.Cgr
<. A ,  x >.  /\ 
<. y ,  D >.Cgr <. B ,  x >. )  ->  ( B  Btwn  <. A ,  x >.  /\ 
<. A ,  x >.Cgr <. C ,  D >. ) ) )
5034, 49sylbid 208 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  ->  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr
<. C ,  D >. ) ) )
5120, 50sylanb 460 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  x  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  ->  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr
<. C ,  D >. ) ) )
5251an32s 781 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  /\  x  e.  ( EE `  N
) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  ->  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr
<. C ,  D >. ) ) )
5352reximdva 2657 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  ( E. x  e.  ( EE `  N ) <. C ,  <. y ,  D >. >.Cgr3 <. A ,  <. B ,  x >. >.  ->  E. x  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\ 
<. A ,  x >.Cgr <. C ,  D >. ) ) )
5419, 53mpd 16 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  /\  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) )  ->  E. x  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\ 
<. A ,  x >.Cgr <. C ,  D >. ) )
5554ex 425 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  y  e.  ( EE `  N ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) ) )
5655rexlimdva 2669 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) ) )
57 simprl 734 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  B  Btwn  <. A ,  x >. )
58 simpll1 996 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  N  e.  NN )
5927adantr 453 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  A  e.  ( EE `  N
) )
60 simplr 733 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  x  e.  ( EE `  N
) )
6129adantr 453 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  B  e.  ( EE `  N
) )
62 btwncolinear1 24100 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  x >.  ->  A  Colinear  <. x ,  B >. ) )
6358, 59, 60, 61, 62syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  ( B  Btwn  <. A ,  x >.  ->  A  Colinear  <. x ,  B >. ) )
6457, 63mpd 16 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  A  Colinear  <.
x ,  B >. )
65 simprr 735 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  <. A ,  x >.Cgr <. C ,  D >. )
66 simpl1 960 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  N  e.  NN )
67 simpr 449 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
68 simpl3 962 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
69 lineext 24107 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( A  Colinear  <. x ,  B >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  ->  E. y  e.  ( EE `  N
) <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >. ) )
7066, 27, 67, 29, 68, 69syl131anc 1197 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( A  Colinear  <. x ,  B >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  ->  E. y  e.  ( EE `  N
) <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >. ) )
7170adantr 453 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  (
( A  Colinear  <. x ,  B >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  ->  E. y  e.  ( EE `  N
) <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >. ) )
7264, 65, 71mp2and 662 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  E. y  e.  ( EE `  N
) <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >. )
7327, 67, 293jca 1134 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
7473adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
75 brcgr3 24077 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  y  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >.  <->  ( <. A ,  x >.Cgr <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>.  /\  <. x ,  B >.Cgr
<. D ,  y >.
) ) )
7621, 74, 23, 26, 24, 75syl113anc 1196 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >.  <-> 
( <. A ,  x >.Cgr
<. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) ) )
7776adantr 453 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  ( <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >.  <->  ( <. A ,  x >.Cgr <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>.  /\  <. x ,  B >.Cgr
<. D ,  y >.
) ) )
78 simp2l 983 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  B  Btwn  <. A ,  x >. )
79 simp32 994 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  <. A ,  B >.Cgr <. C ,  y
>. )
80 simp2r 984 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  <. A ,  x >.Cgr <. C ,  D >. )
81 simp33 995 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  <. x ,  B >.Cgr <. D ,  y
>. )
82 cgrcomlr 24029 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( <. x ,  B >.Cgr <. D ,  y
>. 
<-> 
<. B ,  x >.Cgr <.
y ,  D >. ) )
8321, 31, 30, 26, 24, 82syl122anc 1193 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( <. x ,  B >.Cgr
<. D ,  y >.  <->  <. B ,  x >.Cgr <.
y ,  D >. ) )
84833ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  ( <. x ,  B >.Cgr <. D , 
y >. 
<-> 
<. B ,  x >.Cgr <.
y ,  D >. ) )
8581, 84mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  <. B ,  x >.Cgr <. y ,  D >. )
8679, 80, 853jca 1134 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  ( <. A ,  B >.Cgr <. C , 
y >.  /\  <. A ,  x >.Cgr <. C ,  D >.  /\  <. B ,  x >.Cgr
<. y ,  D >. ) )
87 brcgr3 24077 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >.  <->  ( <. A ,  B >.Cgr <. C , 
y >.  /\  <. A ,  x >.Cgr <. C ,  D >.  /\  <. B ,  x >.Cgr
<. y ,  D >. ) ) )
8821, 28, 30, 31, 23, 24, 26, 87syl133anc 1207 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( <. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >.  <->  (
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. A ,  x >.Cgr <. C ,  D >.  /\ 
<. B ,  x >.Cgr <.
y ,  D >. ) ) )
89883ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  ( <. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >.  <->  ( <. A ,  B >.Cgr <. C , 
y >.  /\  <. A ,  x >.Cgr <. C ,  D >.  /\  <. B ,  x >.Cgr
<. y ,  D >. ) ) )
9086, 89mpbird 225 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  <. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >. )
91 btwnxfr 24087 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  x >.  /\  <. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >. )  ->  y  Btwn  <. C ,  D >. ) )
9221, 28, 30, 31, 23, 24, 26, 91syl133anc 1207 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >. )  ->  y  Btwn  <. C ,  D >. ) )
93923ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  ( ( B  Btwn  <. A ,  x >.  /\  <. A ,  <. B ,  x >. >.Cgr3 <. C ,  <. y ,  D >. >.
)  ->  y  Btwn  <. C ,  D >. ) )
9478, 90, 93mp2and 662 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  y  Btwn  <. C ,  D >. )
9594, 79jca 520 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. )  /\  ( <. A ,  x >.Cgr <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. ) )  ->  ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) )
96953expia 1155 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  (
( <. A ,  x >.Cgr
<. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >.  /\ 
<. x ,  B >.Cgr <. D ,  y >. )  ->  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
9777, 96sylbid 208 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  y  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  ( <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >.  ->  (
y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
9897an32s 781 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  /\  y  e.  ( EE `  N
) )  ->  ( <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >.  ->  (
y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
9998reximdva 2657 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  ( E. y  e.  ( EE `  N ) <. A ,  <. x ,  B >. >.Cgr3 <. C ,  <. D ,  y >. >.  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )
10072, 99mpd 16 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) )  ->  E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )
101100ex 425 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. A ,  x >.Cgr <. C ,  D >. )  ->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
102101rexlimdva 2669 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. x  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\ 
<. A ,  x >.Cgr <. C ,  D >. )  ->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
10356, 102impbid 185 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  <->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) ) )
1041, 103bitrd 246 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. A ,  x >.Cgr <. C ,  D >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    e. wcel 1685   E.wrex 2546   <.cop 3645   class class class wbr 4025   ` cfv 5222   NNcn 9742   EEcee 23924    Btwn cbtwn 23925  Cgrccgr 23926  Cgr3ccgr3 24067    Colinear ccolin 24068    Seg<_ csegle 24137
This theorem is referenced by:  segleantisym  24146  seglelin  24147  outsidele  24163
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-sum 12154  df-ee 23927  df-btwn 23928  df-cgr 23929  df-ofs 24014  df-ifs 24070  df-cgr3 24071  df-colinear 24072  df-segle 24138
  Copyright terms: Public domain W3C validator