MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brssc Unicode version

Theorem brssc 13943
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
brssc  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) ) )
Distinct variable groups:    t, s, x, H    J, s, t, x

Proof of Theorem brssc
Dummy variables  h  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscrel 13942 . . 3  |-  Rel  C_cat
2 brrelex12 4857 . . 3  |-  ( ( Rel  C_cat  /\  H  C_cat  J )  ->  ( H  e. 
_V  /\  J  e.  _V ) )
31, 2mpan 652 . 2  |-  ( H 
C_cat  J  ->  ( H  e.  _V  /\  J  e. 
_V ) )
4 vex 2904 . . . . . 6  |-  t  e. 
_V
54, 4xpex 4932 . . . . 5  |-  ( t  X.  t )  e. 
_V
6 fnex 5902 . . . . 5  |-  ( ( J  Fn  ( t  X.  t )  /\  ( t  X.  t
)  e.  _V )  ->  J  e.  _V )
75, 6mpan2 653 . . . 4  |-  ( J  Fn  ( t  X.  t )  ->  J  e.  _V )
8 elex 2909 . . . . 5  |-  ( H  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x )  ->  H  e.  _V )
98rexlimivw 2771 . . . 4  |-  ( E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x )  ->  H  e.  _V )
107, 9anim12ci 551 . . 3  |-  ( ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) )  ->  ( H  e. 
_V  /\  J  e.  _V ) )
1110exlimiv 1641 . 2  |-  ( E. t ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) )  -> 
( H  e.  _V  /\  J  e.  _V )
)
12 simpr 448 . . . . . 6  |-  ( ( h  =  H  /\  j  =  J )  ->  j  =  J )
1312fneq1d 5478 . . . . 5  |-  ( ( h  =  H  /\  j  =  J )  ->  ( j  Fn  (
t  X.  t )  <-> 
J  Fn  ( t  X.  t ) ) )
14 simpl 444 . . . . . . 7  |-  ( ( h  =  H  /\  j  =  J )  ->  h  =  H )
1512fveq1d 5672 . . . . . . . . 9  |-  ( ( h  =  H  /\  j  =  J )  ->  ( j `  x
)  =  ( J `
 x ) )
1615pweqd 3749 . . . . . . . 8  |-  ( ( h  =  H  /\  j  =  J )  ->  ~P ( j `  x )  =  ~P ( J `  x ) )
1716ixpeq2dv 7016 . . . . . . 7  |-  ( ( h  =  H  /\  j  =  J )  -> 
X_ x  e.  ( s  X.  s ) ~P ( j `  x )  =  X_ x  e.  ( s  X.  s ) ~P ( J `  x )
)
1814, 17eleq12d 2457 . . . . . 6  |-  ( ( h  =  H  /\  j  =  J )  ->  ( h  e.  X_ x  e.  ( s  X.  s ) ~P (
j `  x )  <->  H  e.  X_ x  e.  ( s  X.  s ) ~P ( J `  x ) ) )
1918rexbidv 2672 . . . . 5  |-  ( ( h  =  H  /\  j  =  J )  ->  ( E. s  e. 
~P  t h  e.  X_ x  e.  (
s  X.  s ) ~P ( j `  x )  <->  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) )
2013, 19anbi12d 692 . . . 4  |-  ( ( h  =  H  /\  j  =  J )  ->  ( ( j  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t h  e.  X_ x  e.  (
s  X.  s ) ~P ( j `  x ) )  <->  ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) ) )
2120exbidv 1633 . . 3  |-  ( ( h  =  H  /\  j  =  J )  ->  ( E. t ( j  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t
h  e.  X_ x  e.  ( s  X.  s
) ~P ( j `
 x ) )  <->  E. t ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) ) )
22 df-ssc 13939 . . 3  |-  C_cat  =  { <. h ,  j >.  |  E. t ( j  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t
h  e.  X_ x  e.  ( s  X.  s
) ~P ( j `
 x ) ) }
2321, 22brabga 4412 . 2  |-  ( ( H  e.  _V  /\  J  e.  _V )  ->  ( H  C_cat  J  <->  E. t
( J  Fn  (
t  X.  t )  /\  E. s  e. 
~P  t H  e.  X_ x  e.  (
s  X.  s ) ~P ( J `  x ) ) ) )
243, 11, 23pm5.21nii 343 1  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ x  e.  ( s  X.  s
) ~P ( J `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2652   _Vcvv 2901   ~Pcpw 3744   class class class wbr 4155    X. cxp 4818   Rel wrel 4825    Fn wfn 5391   ` cfv 5396   X_cixp 7001    C_cat cssc 13936
This theorem is referenced by:  sscpwex  13944  sscfn1  13946  sscfn2  13947  isssc  13949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ixp 7002  df-ssc 13939
  Copyright terms: Public domain W3C validator