Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsset Unicode version

Theorem brsset 24429
Description: For sets, the  SSet binary relationship is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Hypothesis
Ref Expression
brsset.1  |-  B  e. 
_V
Assertion
Ref Expression
brsset  |-  ( A
SSet B  <->  A  C_  B )

Proof of Theorem brsset
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsset 24428 . . 3  |-  Rel  SSet
21brrelexi 4729 . 2  |-  ( A
SSet B  ->  A  e. 
_V )
3 brsset.1 . . 3  |-  B  e. 
_V
43ssex 4158 . 2  |-  ( A 
C_  B  ->  A  e.  _V )
5 breq1 4026 . . 3  |-  ( x  =  A  ->  (
x SSet B  <->  A SSet B ) )
6 sseq1 3199 . . 3  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
7 opex 4237 . . . . . . 7  |-  <. x ,  B >.  e.  _V
87elrn 4919 . . . . . 6  |-  ( <.
x ,  B >.  e. 
ran  (  _E  (x)  ( _V  \  _E  )
)  <->  E. y  y (  _E  (x)  ( _V  \  _E  ) ) <.
x ,  B >. )
9 vex 2791 . . . . . . . . 9  |-  y  e. 
_V
10 vex 2791 . . . . . . . . 9  |-  x  e. 
_V
119, 10, 3brtxp 24420 . . . . . . . 8  |-  ( y (  _E  (x)  ( _V  \  _E  ) )
<. x ,  B >.  <->  (
y  _E  x  /\  y ( _V  \  _E  ) B ) )
12 epel 4308 . . . . . . . . 9  |-  ( y  _E  x  <->  y  e.  x )
13 brv 24417 . . . . . . . . . . 11  |-  y _V B
14 brdif 4071 . . . . . . . . . . 11  |-  ( y ( _V  \  _E  ) B  <->  ( y _V B  /\  -.  y  _E  B ) )
1513, 14mpbiran 884 . . . . . . . . . 10  |-  ( y ( _V  \  _E  ) B  <->  -.  y  _E  B )
163epelc 4307 . . . . . . . . . 10  |-  ( y  _E  B  <->  y  e.  B )
1715, 16xchbinx 301 . . . . . . . . 9  |-  ( y ( _V  \  _E  ) B  <->  -.  y  e.  B )
1812, 17anbi12i 678 . . . . . . . 8  |-  ( ( y  _E  x  /\  y ( _V  \  _E  ) B )  <->  ( y  e.  x  /\  -.  y  e.  B ) )
1911, 18bitri 240 . . . . . . 7  |-  ( y (  _E  (x)  ( _V  \  _E  ) )
<. x ,  B >.  <->  (
y  e.  x  /\  -.  y  e.  B
) )
2019exbii 1569 . . . . . 6  |-  ( E. y  y (  _E 
(x)  ( _V  \  _E  ) ) <. x ,  B >.  <->  E. y ( y  e.  x  /\  -.  y  e.  B )
)
21 exanali 1572 . . . . . 6  |-  ( E. y ( y  e.  x  /\  -.  y  e.  B )  <->  -.  A. y
( y  e.  x  ->  y  e.  B ) )
228, 20, 213bitrri 263 . . . . 5  |-  ( -. 
A. y ( y  e.  x  ->  y  e.  B )  <->  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
2322con1bii 321 . . . 4  |-  ( -. 
<. x ,  B >.  e. 
ran  (  _E  (x)  ( _V  \  _E  )
)  <->  A. y ( y  e.  x  ->  y  e.  B ) )
24 df-br 4024 . . . . 5  |-  ( x
SSet B  <->  <. x ,  B >.  e.  SSet )
25 df-sset 24397 . . . . . . 7  |-  SSet  =  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )
2625eleq2i 2347 . . . . . 6  |-  ( <.
x ,  B >.  e. 
SSet 
<-> 
<. x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) ) )
2710, 3opelvv 4735 . . . . . . 7  |-  <. x ,  B >.  e.  ( _V  X.  _V )
28 eldif 3162 . . . . . . 7  |-  ( <.
x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )  <->  ( <. x ,  B >.  e.  ( _V  X.  _V )  /\  -.  <. x ,  B >.  e.  ran  (  _E 
(x)  ( _V  \  _E  ) ) ) )
2927, 28mpbiran 884 . . . . . 6  |-  ( <.
x ,  B >.  e.  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )  <->  -.  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
3026, 29bitri 240 . . . . 5  |-  ( <.
x ,  B >.  e. 
SSet 
<->  -.  <. x ,  B >.  e.  ran  (  _E 
(x)  ( _V  \  _E  ) ) )
3124, 30bitri 240 . . . 4  |-  ( x
SSet B  <->  -.  <. x ,  B >.  e.  ran  (  _E  (x)  ( _V 
\  _E  ) ) )
32 dfss2 3169 . . . 4  |-  ( x 
C_  B  <->  A. y
( y  e.  x  ->  y  e.  B ) )
3323, 31, 323bitr4i 268 . . 3  |-  ( x
SSet B  <->  x  C_  B )
345, 6, 33vtoclbg 2844 . 2  |-  ( A  e.  _V  ->  ( A SSet B  <->  A  C_  B
) )
352, 4, 34pm5.21nii 342 1  |-  ( A
SSet B  <->  A  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    e. wcel 1684   _Vcvv 2788    \ cdif 3149    C_ wss 3152   <.cop 3643   class class class wbr 4023    _E cep 4303    X. cxp 4687   ran crn 4690    (x) ctxp 24373   SSetcsset 24375
This theorem is referenced by:  idsset  24430  dfon3  24432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-eprel 4305  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6122  df-2nd 6123  df-txp 24395  df-sset 24397
  Copyright terms: Public domain W3C validator