Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtp Unicode version

Theorem brtp 25361
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1  |-  X  e. 
_V
brtp.2  |-  Y  e. 
_V
Assertion
Ref Expression
brtp  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  ( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )

Proof of Theorem brtp
StepHypRef Expression
1 df-br 4205 . 2  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  <. X ,  Y >.  e.  { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } )
2 opex 4419 . . 3  |-  <. X ,  Y >.  e.  _V
32eltp 3845 . 2  |-  ( <. X ,  Y >.  e. 
{ <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. }  <->  ( <. X ,  Y >.  =  <. A ,  B >.  \/  <. X ,  Y >.  =  <. C ,  D >.  \/  <. X ,  Y >.  =  <. E ,  F >. ) )
4 brtp.1 . . . 4  |-  X  e. 
_V
5 brtp.2 . . . 4  |-  Y  e. 
_V
64, 5opth 4427 . . 3  |-  ( <. X ,  Y >.  = 
<. A ,  B >.  <->  ( X  =  A  /\  Y  =  B )
)
74, 5opth 4427 . . 3  |-  ( <. X ,  Y >.  = 
<. C ,  D >.  <->  ( X  =  C  /\  Y  =  D )
)
84, 5opth 4427 . . 3  |-  ( <. X ,  Y >.  = 
<. E ,  F >.  <->  ( X  =  E  /\  Y  =  F )
)
96, 7, 83orbi123i 1143 . 2  |-  ( (
<. X ,  Y >.  = 
<. A ,  B >.  \/ 
<. X ,  Y >.  = 
<. C ,  D >.  \/ 
<. X ,  Y >.  = 
<. E ,  F >. )  <-> 
( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )
101, 3, 93bitri 263 1  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  ( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   _Vcvv 2948   {ctp 3808   <.cop 3809   class class class wbr 4204
This theorem is referenced by:  sltval2  25565  sltsgn1  25570  sltsgn2  25571  sltintdifex  25572  sltres  25573  sltsolem1  25577  nodenselem8  25597  nodense  25598  nobndup  25609  nobnddown  25610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-br 4205
  Copyright terms: Public domain W3C validator