Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtp Unicode version

Theorem brtp 23512
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1  |-  X  e. 
_V
brtp.2  |-  Y  e. 
_V
Assertion
Ref Expression
brtp  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  ( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )

Proof of Theorem brtp
StepHypRef Expression
1 df-br 4025 . 2  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  <. X ,  Y >.  e.  { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } )
2 opex 4236 . . 3  |-  <. X ,  Y >.  e.  _V
32eltp 3679 . 2  |-  ( <. X ,  Y >.  e. 
{ <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. }  <->  ( <. X ,  Y >.  =  <. A ,  B >.  \/  <. X ,  Y >.  =  <. C ,  D >.  \/  <. X ,  Y >.  =  <. E ,  F >. ) )
4 brtp.1 . . . 4  |-  X  e. 
_V
5 brtp.2 . . . 4  |-  Y  e. 
_V
64, 5opth 4244 . . 3  |-  ( <. X ,  Y >.  = 
<. A ,  B >.  <->  ( X  =  A  /\  Y  =  B )
)
74, 5opth 4244 . . 3  |-  ( <. X ,  Y >.  = 
<. C ,  D >.  <->  ( X  =  C  /\  Y  =  D )
)
84, 5opth 4244 . . 3  |-  ( <. X ,  Y >.  = 
<. E ,  F >.  <->  ( X  =  E  /\  Y  =  F )
)
96, 7, 83orbi123i 1141 . 2  |-  ( (
<. X ,  Y >.  = 
<. A ,  B >.  \/ 
<. X ,  Y >.  = 
<. C ,  D >.  \/ 
<. X ,  Y >.  = 
<. E ,  F >. )  <-> 
( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )
101, 3, 93bitri 262 1  |-  ( X { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. } Y  <->  ( ( X  =  A  /\  Y  =  B )  \/  ( X  =  C  /\  Y  =  D )  \/  ( X  =  E  /\  Y  =  F ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    \/ w3o 933    = wceq 1623    e. wcel 1685   _Vcvv 2789   {ctp 3643   <.cop 3644   class class class wbr 4024
This theorem is referenced by:  sltval2  23713  sltsgn1  23718  sltsgn2  23719  sltintdifex  23720  sltres  23721  axsltsolem1  23725  axdenselem8  23746  axdense  23747  axfelem9  23758  axfelem10  23759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-br 4025
  Copyright terms: Public domain W3C validator