Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnouttr2 Unicode version

Theorem btwnouttr2 23819
Description: Outer transitivity law for betweenness. Left hand side of Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
btwnouttr2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  ->  C  Btwn  <. A ,  D >. ) )

Proof of Theorem btwnouttr2
StepHypRef Expression
1 simp1 960 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp2l 986 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
3 simp3l 988 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
4 simp3r 989 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
5 axsegcon 23729 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr <. C ,  D >. ) )
61, 2, 3, 3, 4, 5syl122anc 1196 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr <. C ,  D >. ) )
76adantr 453 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. ) )  ->  E. x  e.  ( EE `  N
) ( C  Btwn  <. A ,  x >.  /\ 
<. C ,  x >.Cgr <. C ,  D >. ) )
8 simprrl 743 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  C  Btwn  <. A ,  x >. )
9 simprl1 1005 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  B  =/=  C )
10 simpl2 964 . . . . . . . . . . . . 13  |-  ( ( ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\ 
<. C ,  x >.Cgr <. C ,  D >. ) )  ->  B  Btwn  <. A ,  C >. )
11 simprl 735 . . . . . . . . . . . . 13  |-  ( ( ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\ 
<. C ,  x >.Cgr <. C ,  D >. ) )  ->  C  Btwn  <. A ,  x >. )
1210, 11jca 520 . . . . . . . . . . . 12  |-  ( ( ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\ 
<. C ,  x >.Cgr <. C ,  D >. ) )  ->  ( B  Btwn  <. A ,  C >.  /\  C  Btwn  <. A ,  x >. ) )
1312adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  ( B  Btwn  <. A ,  C >.  /\  C  Btwn  <. A ,  x >. ) )
14 simpl1 963 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  N  e.  NN )
15 simpl2l 1013 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
16 simpl2r 1014 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
17 simpl3l 1015 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
18 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
19 btwnexch3 23817 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( B 
Btwn  <. A ,  C >.  /\  C  Btwn  <. A ,  x >. )  ->  C  Btwn  <. B ,  x >. ) )
2014, 15, 16, 17, 18, 19syl122anc 1196 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\  C  Btwn  <. A ,  x >. )  ->  C  Btwn  <. B ,  x >. ) )
2120adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  C  Btwn  <. A ,  x >. )  ->  C  Btwn  <. B ,  x >. ) )
2213, 21mpd 16 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  C  Btwn  <. B ,  x >. )
23 simprrr 744 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  <. C ,  x >.Cgr <. C ,  D >. )
2422, 23jca 520 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  ( C  Btwn  <. B ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) )
25 simprl3 1007 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  C  Btwn  <. B ,  D >. )
26 simpl3r 1016 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
2714, 17, 26cgrrflxd 23785 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  <. C ,  D >.Cgr <. C ,  D >. )
2827adantr 453 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  <. C ,  D >.Cgr <. C ,  D >. )
2925, 28jca 520 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  ( C  Btwn  <. B ,  D >.  /\  <. C ,  D >.Cgr
<. C ,  D >. ) )
30 segconeq 23807 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  x  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( B  =/=  C  /\  ( C  Btwn  <. B ,  x >.  /\  <. C ,  x >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. B ,  D >.  /\  <. C ,  D >.Cgr
<. C ,  D >. ) )  ->  x  =  D ) )
3114, 17, 17, 26, 16, 18, 26, 30syl133anc 1210 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  =/= 
C  /\  ( C  Btwn  <. B ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. )  /\  ( C  Btwn  <. B ,  D >.  /\ 
<. C ,  D >.Cgr <. C ,  D >. ) )  ->  x  =  D ) )
3231adantr 453 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  (
( B  =/=  C  /\  ( C  Btwn  <. B ,  x >.  /\  <. C ,  x >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. B ,  D >.  /\  <. C ,  D >.Cgr
<. C ,  D >. ) )  ->  x  =  D ) )
339, 24, 29, 32mp3and 1285 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  x  =  D )
3433opeq2d 3703 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  <. A ,  x >.  =  <. A ,  D >. )
358, 34breqtrd 3944 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( ( B  =/= 
C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  /\  ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. ) ) )  ->  C  Btwn  <. A ,  D >. )
3635expr 601 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  /\  ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. ) )  ->  ( ( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. )  ->  C  Btwn  <. A ,  D >. ) )
3736an32s 782 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. ) )  /\  x  e.  ( EE `  N
) )  ->  (
( C  Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr <. C ,  D >. )  ->  C  Btwn  <. A ,  D >. ) )
3837rexlimdva 2629 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. ) )  ->  ( E. x  e.  ( EE `  N ) ( C 
Btwn  <. A ,  x >.  /\  <. C ,  x >.Cgr
<. C ,  D >. )  ->  C  Btwn  <. A ,  D >. ) )
397, 38mpd 16 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. ) )  ->  C  Btwn  <. A ,  D >. )
4039ex 425 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( B  =/=  C  /\  B  Btwn  <. A ,  C >.  /\  C  Btwn  <. B ,  D >. )  ->  C  Btwn  <. A ,  D >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   <.cop 3547   class class class wbr 3920   ` cfv 4592   NNcn 9626   EEcee 23690    Btwn cbtwn 23691  Cgrccgr 23692
This theorem is referenced by:  btwnexch2  23820  btwnouttr  23821  btwnoutside  23922  lineelsb2  23945
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-ee 23693  df-btwn 23694  df-cgr 23695  df-ofs 23780
  Copyright terms: Public domain W3C validator