Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnswapid Unicode version

Theorem btwnswapid 25894
Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
btwnswapid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  A  =  B ) )

Proof of Theorem btwnswapid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr2 964 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
3 simpr1 963 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
4 simpr3 965 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
5 axpasch 25823 . . 3  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. ) ) )
61, 2, 3, 4, 3, 2, 5syl132anc 1202 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. ) ) )
7 simpll 731 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  N  e.  NN )
8 simpr 448 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  x  e.  ( EE `  N
) )
9 simplr1 999 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
10 axbtwnid 25821 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  (
x  Btwn  <. A ,  A >.  ->  x  =  A ) )
117, 8, 9, 10syl3anc 1184 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. A ,  A >.  ->  x  =  A ) )
12 simplr2 1000 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
13 axbtwnid 25821 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  (
x  Btwn  <. B ,  B >.  ->  x  =  B ) )
147, 8, 12, 13syl3anc 1184 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. B ,  B >.  ->  x  =  B ) )
1511, 14anim12d 547 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  ( x  =  A  /\  x  =  B ) ) )
16 eqtr2 2448 . . . 4  |-  ( ( x  =  A  /\  x  =  B )  ->  A  =  B )
1715, 16syl6 31 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  x  e.  ( EE `  N
) )  ->  (
( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  A  =  B ) )
1817rexlimdva 2817 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( x  Btwn  <. A ,  A >.  /\  x  Btwn  <. B ,  B >. )  ->  A  =  B ) )
196, 18syld 42 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  /\  B  Btwn  <. A ,  C >. )  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2693   <.cop 3804   class class class wbr 4199   ` cfv 5440   NNcn 9984   EEcee 25770    Btwn cbtwn 25771
This theorem is referenced by:  btwnswapid2  25895  segleantisym  25992  broutsideof2  25999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-er 6891  df-map 7006  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-z 10267  df-uz 10473  df-icc 10907  df-fz 11028  df-ee 25773  df-btwn 25774
  Copyright terms: Public domain W3C validator