Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnxfr Structured version   Unicode version

Theorem btwnxfr 25983
Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
btwnxfr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )

Proof of Theorem btwnxfr
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 brcgr3 25973 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) )
2 simp2 958 . . . . . 6  |-  ( (
<. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  ->  <. A ,  C >.Cgr
<. D ,  F >. )
31, 2syl6bi 220 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  <. A ,  C >.Cgr <. D ,  F >. ) )
4 simp1 957 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simp21 990 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
6 simp22 991 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
7 simp23 992 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
8 simp31 993 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
9 simp33 995 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
10 cgrxfr 25982 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
114, 5, 6, 7, 8, 9, 10syl132anc 1202 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
123, 11sylan2d 469 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
1312imp 419 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
14 simprrl 741 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  e  Btwn  <. D ,  F >. )
1514, 14jca 519 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. ) )
16 simpl1 960 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  N  e.  NN )
17 simpl31 1038 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  D  e.  ( EE `  N
) )
18 simpl33 1040 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  F  e.  ( EE `  N
) )
1916, 17, 18cgrrflxd 25915 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  <. D ,  F >.Cgr <. D ,  F >. )
20 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  e  e.  ( EE `  N
) )
2116, 20, 18cgrrflxd 25915 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  <. e ,  F >.Cgr <. e ,  F >. )
2219, 21jca 519 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. ) )
2322adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( <. D ,  F >.Cgr <. D ,  F >.  /\  <. e ,  F >.Cgr
<. e ,  F >. ) )
24 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )
25 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
26 simpl2 961 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
27 simpl3 962 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )
2817, 20, 183jca 1134 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )
29 cgr3tr4 25979 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
3016, 26, 27, 28, 29syl13anc 1186 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
)  ->  <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
31 cgr3com 25980 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >. ) )
3216, 27, 17, 20, 18, 31syl113anc 1196 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >. ) )
33 simpl32 1039 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  E  e.  ( EE `  N
) )
34 brcgr3 25973 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. D ,  F >.Cgr <. D ,  F >.  /\  <. e ,  F >.Cgr
<. E ,  F >. ) ) )
3516, 17, 20, 18, 17, 33, 18, 34syl133anc 1207 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. D ,  F >.Cgr <. D ,  F >.  /\  <. e ,  F >.Cgr
<. E ,  F >. ) ) )
36 simpr1 963 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  <. D , 
e >.Cgr <. D ,  E >. )
37 simpr3 965 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  <. e ,  F >.Cgr <. E ,  F >. )
3816, 20, 18, 33, 18, 37cgrcomlrand 25928 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  <. F , 
e >.Cgr <. F ,  E >. )
3936, 38jca 519 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. F , 
e >.Cgr <. F ,  E >. ) )
4039ex 424 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( <. D ,  e
>.Cgr <. D ,  E >.  /\  <. D ,  F >.Cgr
<. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. )  ->  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) )
4135, 40sylbid 207 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. F ,  e >.Cgr <. F ,  E >. ) ) )
4232, 41sylbid 207 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >.  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. F ,  e >.Cgr <. F ,  E >. ) ) )
4330, 42syld 42 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
)  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. F , 
e >.Cgr <. F ,  E >. ) ) )
4424, 25, 43syl2ani 638 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  -> 
( <. D ,  e
>.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) )
4544imp 419 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) )
4615, 23, 453jca 1134 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( ( e 
Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) )
4746ex 424 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  -> 
( ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) ) )
48 brifs 25970 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  D  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  (
e  e.  ( EE
`  N )  /\  F  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. <. D ,  e
>. ,  <. F , 
e >. >. 
InnerFiveSeg  <. <. D ,  e
>. ,  <. F ,  E >. >. 
<->  ( ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) ) )
49 ifscgr 25971 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  D  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  (
e  e.  ( EE
`  N )  /\  F  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. <. D ,  e
>. ,  <. F , 
e >. >. 
InnerFiveSeg  <. <. D ,  e
>. ,  <. F ,  E >. >.  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
5048, 49sylbird 227 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  D  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  (
e  e.  ( EE
`  N )  /\  F  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( ( e 
Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) )  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
5116, 17, 20, 18, 20, 17, 20, 18, 33, 50syl333anc 1216 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) )  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
5247, 51syld 42 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
53 cgrid2 25930 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( e  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) ) )  ->  ( <. e ,  e >.Cgr <. e ,  E >.  -> 
e  =  E ) )
5416, 20, 20, 33, 53syl13anc 1186 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. e ,  e >.Cgr <. e ,  E >.  -> 
e  =  E ) )
5552, 54syld 42 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  -> 
e  =  E ) )
5655imp 419 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  e  =  E )
5756, 14eqbrtrrd 4227 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  E  Btwn  <. D ,  F >. )
5857expr 599 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  (
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
5958an32s 780 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  /\  e  e.  ( EE `  N
) )  ->  (
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
6059rexlimdva 2823 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  ( E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
6113, 60mpd 15 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  E  Btwn  <. D ,  F >. )
6261ex 424 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2699   <.cop 3810   class class class wbr 4205   ` cfv 5447   NNcn 9993   EEcee 25820    Btwn cbtwn 25821  Cgrccgr 25822    InnerFiveSeg cifs 25962  Cgr3ccgr3 25963
This theorem is referenced by:  colinearxfr  26002  brofs2  26004  brifs2  26005  endofsegid  26012  brsegle2  26036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-sup 7439  df-oi 7472  df-card 7819  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-n0 10215  df-z 10276  df-uz 10482  df-rp 10606  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-clim 12275  df-sum 12473  df-ee 25823  df-btwn 25824  df-cgr 25825  df-ofs 25910  df-ifs 25966  df-cgr3 25967
  Copyright terms: Public domain W3C validator