Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnxfr Unicode version

Theorem btwnxfr 24751
Description: A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
btwnxfr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )

Proof of Theorem btwnxfr
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 brcgr3 24741 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. A ,  C >.Cgr <. D ,  F >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) )
2 simp2 956 . . . . . 6  |-  ( (
<. A ,  B >.Cgr <. D ,  E >.  /\ 
<. A ,  C >.Cgr <. D ,  F >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  ->  <. A ,  C >.Cgr
<. D ,  F >. )
31, 2syl6bi 219 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  <. A ,  C >.Cgr <. D ,  F >. ) )
4 simp1 955 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simp21 988 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
6 simp22 989 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
7 simp23 990 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
8 simp31 991 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
9 simp33 993 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
10 cgrxfr 24750 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )
114, 5, 6, 7, 8, 9, 10syl132anc 1200 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. D ,  F >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
123, 11sylan2d 468 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
) )
1312imp 418 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. D ,  F >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
)
14 simprrl 740 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  e  Btwn  <. D ,  F >. )
1514, 14jca 518 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. ) )
16 simpl1 958 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  N  e.  NN )
17 simpl31 1036 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  D  e.  ( EE `  N
) )
18 simpl33 1038 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  F  e.  ( EE `  N
) )
1916, 17, 18cgrrflxd 24683 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  <. D ,  F >.Cgr <. D ,  F >. )
20 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  e  e.  ( EE `  N
) )
2116, 20, 18cgrrflxd 24683 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  <. e ,  F >.Cgr <. e ,  F >. )
2219, 21jca 518 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. ) )
2322adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( <. D ,  F >.Cgr <. D ,  F >.  /\  <. e ,  F >.Cgr
<. e ,  F >. ) )
24 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )
25 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )
26 simpl2 959 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
27 simpl3 960 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )
2817, 20, 183jca 1132 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )
29 cgr3tr4 24747 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
3016, 26, 27, 28, 29syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
)  ->  <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )
31 cgr3com 24748 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >. ) )
3216, 27, 17, 20, 18, 31syl113anc 1194 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >.  <->  <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >. ) )
33 simpl32 1037 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  E  e.  ( EE `  N
) )
34 brcgr3 24741 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  F  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. D ,  F >.Cgr <. D ,  F >.  /\  <. e ,  F >.Cgr
<. E ,  F >. ) ) )
3516, 17, 20, 18, 17, 33, 18, 34syl133anc 1205 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >.  <->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. D ,  F >.Cgr <. D ,  F >.  /\  <. e ,  F >.Cgr
<. E ,  F >. ) ) )
36 simpr1 961 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  <. D , 
e >.Cgr <. D ,  E >. )
37 simpr3 963 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  <. e ,  F >.Cgr <. E ,  F >. )
3816, 20, 18, 33, 18, 37cgrcomlrand 24696 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  <. F , 
e >.Cgr <. F ,  E >. )
3936, 38jca 518 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. ) )  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. F , 
e >.Cgr <. F ,  E >. ) )
4039ex 423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( <. D ,  e
>.Cgr <. D ,  E >.  /\  <. D ,  F >.Cgr
<. D ,  F >.  /\ 
<. e ,  F >.Cgr <. E ,  F >. )  ->  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) )
4135, 40sylbid 206 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. e ,  F >. >.Cgr3 <. D ,  <. E ,  F >. >.  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. F ,  e >.Cgr <. F ,  E >. ) ) )
4232, 41sylbid 206 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. D ,  <. E ,  F >. >.Cgr3 <. D ,  <. e ,  F >. >.  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\ 
<. F ,  e >.Cgr <. F ,  E >. ) ) )
4330, 42syld 40 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >.
)  ->  ( <. D ,  e >.Cgr <. D ,  E >.  /\  <. F , 
e >.Cgr <. F ,  E >. ) ) )
4424, 25, 43syl2ani 637 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  -> 
( <. D ,  e
>.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) )
4544imp 418 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) )
4615, 23, 453jca 1132 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  ( ( e 
Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) )
4746ex 423 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  -> 
( ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) ) )
48 brifs 24738 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  D  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  (
e  e.  ( EE
`  N )  /\  F  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. <. D ,  e
>. ,  <. F , 
e >. >. 
InnerFiveSeg  <. <. D ,  e
>. ,  <. F ,  E >. >. 
<->  ( ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) ) ) )
49 ifscgr 24739 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  D  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  (
e  e.  ( EE
`  N )  /\  F  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. <. D ,  e
>. ,  <. F , 
e >. >. 
InnerFiveSeg  <. <. D ,  e
>. ,  <. F ,  E >. >.  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
5048, 49sylbird 226 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  D  e.  ( EE
`  N )  /\  e  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  (
e  e.  ( EE
`  N )  /\  F  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( ( e 
Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) )  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
5116, 17, 20, 18, 20, 17, 20, 18, 33, 50syl333anc 1214 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( e  Btwn  <. D ,  F >.  /\  e  Btwn  <. D ,  F >. )  /\  ( <. D ,  F >.Cgr <. D ,  F >.  /\ 
<. e ,  F >.Cgr <.
e ,  F >. )  /\  ( <. D , 
e >.Cgr <. D ,  E >.  /\  <. F ,  e
>.Cgr <. F ,  E >. ) )  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
5247, 51syld 40 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  ->  <. e ,  e >.Cgr <. e ,  E >. ) )
53 cgrid2 24698 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( e  e.  ( EE `  N )  /\  e  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) ) )  ->  ( <. e ,  e >.Cgr <. e ,  E >.  -> 
e  =  E ) )
5416, 20, 20, 33, 53syl13anc 1184 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( <. e ,  e >.Cgr <. e ,  E >.  -> 
e  =  E ) )
5552, 54syld 40 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) )  -> 
e  =  E ) )
5655imp 418 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  e  =  E )
5756, 14eqbrtrrd 4061 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  /\  (
e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. ) ) )  ->  E  Btwn  <. D ,  F >. )
5857expr 598 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  e  e.  ( EE `  N
) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  (
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
5958an32s 779 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  /\  e  e.  ( EE `  N
) )  ->  (
( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
6059rexlimdva 2680 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  ( E. e  e.  ( EE `  N ) ( e  Btwn  <. D ,  F >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. e ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
6113, 60mpd 14 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >.
) )  ->  E  Btwn  <. D ,  F >. )
6261ex 423 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. D ,  <. E ,  F >. >. )  ->  E  Btwn  <. D ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   <.cop 3656   class class class wbr 4039   ` cfv 5271   NNcn 9762   EEcee 24588    Btwn cbtwn 24589  Cgrccgr 24590    InnerFiveSeg cifs 24730  Cgr3ccgr3 24731
This theorem is referenced by:  colinearxfr  24770  brofs2  24772  brifs2  24773  endofsegid  24780  brsegle2  24804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-ee 24591  df-btwn 24592  df-cgr 24593  df-ofs 24678  df-ifs 24734  df-cgr3 24735
  Copyright terms: Public domain W3C validator