MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnz Unicode version

Theorem btwnz 10046
Description: Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
Assertion
Ref Expression
btwnz  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Distinct variable groups:    x, A    y, A

Proof of Theorem btwnz
StepHypRef Expression
1 renegcl 9043 . . . 4  |-  ( A  e.  RR  ->  -u A  e.  RR )
2 arch 9894 . . . 4  |-  ( -u A  e.  RR  ->  E. z  e.  NN  -u A  <  z )
31, 2syl 17 . . 3  |-  ( A  e.  RR  ->  E. z  e.  NN  -u A  <  z
)
4 nnre 9686 . . . . . . . 8  |-  ( z  e.  NN  ->  z  e.  RR )
5 ltnegcon1 9208 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  z  e.  RR )  ->  ( -u A  < 
z  <->  -u z  <  A
) )
65ex 425 . . . . . . . 8  |-  ( A  e.  RR  ->  (
z  e.  RR  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
74, 6syl5 30 . . . . . . 7  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  <->  -u z  <  A ) ) )
87pm5.32d 623 . . . . . 6  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  <-> 
( z  e.  NN  /\  -u z  <  A ) ) )
9 nnnegz 9959 . . . . . . 7  |-  ( z  e.  NN  ->  -u z  e.  ZZ )
10 breq1 3966 . . . . . . . 8  |-  ( x  =  -u z  ->  (
x  <  A  <->  -u z  < 
A ) )
1110rcla4ev 2835 . . . . . . 7  |-  ( (
-u z  e.  ZZ  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
129, 11sylan 459 . . . . . 6  |-  ( ( z  e.  NN  /\  -u z  <  A )  ->  E. x  e.  ZZ  x  <  A )
138, 12syl6bi 221 . . . . 5  |-  ( A  e.  RR  ->  (
( z  e.  NN  /\  -u A  <  z )  ->  E. x  e.  ZZ  x  <  A ) )
1413exp3a 427 . . . 4  |-  ( A  e.  RR  ->  (
z  e.  NN  ->  (
-u A  <  z  ->  E. x  e.  ZZ  x  <  A ) ) )
1514rexlimdv 2637 . . 3  |-  ( A  e.  RR  ->  ( E. z  e.  NN  -u A  <  z  ->  E. x  e.  ZZ  x  <  A ) )
163, 15mpd 16 . 2  |-  ( A  e.  RR  ->  E. x  e.  ZZ  x  <  A
)
17 arch 9894 . . 3  |-  ( A  e.  RR  ->  E. y  e.  NN  A  <  y
)
18 nnz 9977 . . . . 5  |-  ( y  e.  NN  ->  y  e.  ZZ )
1918anim1i 554 . . . 4  |-  ( ( y  e.  NN  /\  A  <  y )  -> 
( y  e.  ZZ  /\  A  <  y ) )
2019reximi2 2620 . . 3  |-  ( E. y  e.  NN  A  <  y  ->  E. y  e.  ZZ  A  <  y
)
2117, 20syl 17 . 2  |-  ( A  e.  RR  ->  E. y  e.  ZZ  A  <  y
)
2216, 21jca 520 1  |-  ( A  e.  RR  ->  ( E. x  e.  ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   E.wrex 2517   class class class wbr 3963   RRcr 8669    < clt 8800   -ucneg 8971   NNcn 9679   ZZcz 9956
This theorem is referenced by:  lbzbi  10238  rpnnen1lem1  10274  rpnnen1lem2  10275  rpnnen1lem3  10276  rpnnen1lem5  10278
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-n 9680  df-z 9957
  Copyright terms: Public domain W3C validator