MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthnum Unicode version

Theorem canthnum 8287
Description: The set of well-orderable subsets of a set  A strictly dominates  A. A stronger form of canth2 7030. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
Assertion
Ref Expression
canthnum  |-  ( A  e.  V  ->  A  ~<  ( ~P A  i^i  dom 
card ) )

Proof of Theorem canthnum
Dummy variables  f 
a  r  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4210 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 inex1g 4173 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
3 infpwfidom 7671 . . . 4  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
41, 2, 33syl 18 . . 3  |-  ( A  e.  V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
5 inex1g 4173 . . . . 5  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  dom  card )  e.  _V )
61, 5syl 15 . . . 4  |-  ( A  e.  V  ->  ( ~P A  i^i  dom  card )  e.  _V )
7 finnum 7597 . . . . . 6  |-  ( x  e.  Fin  ->  x  e.  dom  card )
87ssriv 3197 . . . . 5  |-  Fin  C_  dom  card
9 sslin 3408 . . . . 5  |-  ( Fin  C_  dom  card  ->  ( ~P A  i^i  Fin )  C_  ( ~P A  i^i  dom 
card ) )
108, 9ax-mp 8 . . . 4  |-  ( ~P A  i^i  Fin )  C_  ( ~P A  i^i  dom 
card )
11 ssdomg 6923 . . . 4  |-  ( ( ~P A  i^i  dom  card )  e.  _V  ->  ( ( ~P A  i^i  Fin )  C_  ( ~P A  i^i  dom  card )  -> 
( ~P A  i^i  Fin )  ~<_  ( ~P A  i^i  dom  card ) ) )
126, 10, 11ee10 1366 . . 3  |-  ( A  e.  V  ->  ( ~P A  i^i  Fin )  ~<_  ( ~P A  i^i  dom  card ) )
13 domtr 6930 . . 3  |-  ( ( A  ~<_  ( ~P A  i^i  Fin )  /\  ( ~P A  i^i  Fin )  ~<_  ( ~P A  i^i  dom  card ) )  ->  A  ~<_  ( ~P A  i^i  dom  card ) )
144, 12, 13syl2anc 642 . 2  |-  ( A  e.  V  ->  A  ~<_  ( ~P A  i^i  dom  card ) )
15 eqid 2296 . . . . . . 7  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }  =  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }
1615fpwwecbv 8282 . . . . . 6  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }  =  { <. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( f `  ( `' s " { z } ) )  =  z ) ) }
17 eqid 2296 . . . . . 6  |-  U. dom  {
<. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }  =  U. dom  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) }
18 eqid 2296 . . . . . 6  |-  ( `' ( { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) } `  U. dom  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " {
y } ) )  =  y ) ) } ) " {
( f `  U. dom  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " {
y } ) )  =  y ) ) } ) } )  =  ( `' ( { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( f `  ( `' r " {
y } ) )  =  y ) ) } `  U. dom  {
<. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) } ) " { ( f `  U. dom  {
<. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( f `  ( `' r " { y } ) )  =  y ) ) } ) } )
1916, 17, 18canthnumlem 8286 . . . . 5  |-  ( A  e.  V  ->  -.  f : ( ~P A  i^i  dom  card ) -1-1-> A )
20 f1of1 5487 . . . . 5  |-  ( f : ( ~P A  i^i  dom  card ) -1-1-onto-> A  ->  f :
( ~P A  i^i  dom 
card ) -1-1-> A )
2119, 20nsyl 113 . . . 4  |-  ( A  e.  V  ->  -.  f : ( ~P A  i^i  dom  card ) -1-1-onto-> A )
2221nexdv 1869 . . 3  |-  ( A  e.  V  ->  -.  E. f  f : ( ~P A  i^i  dom  card ) -1-1-onto-> A )
23 ensym 6926 . . . 4  |-  ( A 
~~  ( ~P A  i^i  dom  card )  ->  ( ~P A  i^i  dom  card )  ~~  A )
24 bren 6887 . . . 4  |-  ( ( ~P A  i^i  dom  card )  ~~  A  <->  E. f 
f : ( ~P A  i^i  dom  card )
-1-1-onto-> A )
2523, 24sylib 188 . . 3  |-  ( A 
~~  ( ~P A  i^i  dom  card )  ->  E. f 
f : ( ~P A  i^i  dom  card )
-1-1-onto-> A )
2622, 25nsyl 113 . 2  |-  ( A  e.  V  ->  -.  A  ~~  ( ~P A  i^i  dom  card ) )
27 brsdom 6900 . 2  |-  ( A 
~<  ( ~P A  i^i  dom 
card )  <->  ( A  ~<_  ( ~P A  i^i  dom  card )  /\  -.  A  ~~  ( ~P A  i^i  dom 
card ) ) )
2814, 26, 27sylanbrc 645 1  |-  ( A  e.  V  ->  A  ~<  ( ~P A  i^i  dom 
card ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843   class class class wbr 4039   {copab 4092    We wwe 4367    X. cxp 4703   `'ccnv 4704   dom cdm 4705   "cima 4708   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   Fincfn 6879   cardccrd 7584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-1st 6138  df-riota 6320  df-recs 6404  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588
  Copyright terms: Public domain W3C validator