MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Unicode version

Theorem canthp1 8521
Description: A slightly stronger form of Cantor's theorem: For  1  <  n,  n  +  1  <  2 ^ n. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1  |-  ( 1o 
~<  A  ->  ( A  +c  1o )  ~<  ~P A )

Proof of Theorem canthp1
Dummy variables  f 
a  g  r  s  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 7299 . . . 4  |-  1o  ~<  2o
2 sdomdom 7127 . . . 4  |-  ( 1o 
~<  2o  ->  1o  ~<_  2o )
3 cdadom2 8059 . . . 4  |-  ( 1o  ~<_  2o  ->  ( A  +c  1o )  ~<_  ( A  +c  2o ) )
41, 2, 3mp2b 10 . . 3  |-  ( A  +c  1o )  ~<_  ( A  +c  2o )
5 canthp1lem1 8519 . . 3  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ~P A )
6 domtr 7152 . . 3  |-  ( ( ( A  +c  1o )  ~<_  ( A  +c  2o )  /\  ( A  +c  2o )  ~<_  ~P A )  ->  ( A  +c  1o )  ~<_  ~P A )
74, 5, 6sylancr 645 . 2  |-  ( 1o 
~<  A  ->  ( A  +c  1o )  ~<_  ~P A )
8 fal 1331 . . 3  |-  -.  F.
9 ensym 7148 . . . . 5  |-  ( ( A  +c  1o ) 
~~  ~P A  ->  ~P A  ~~  ( A  +c  1o ) )
10 bren 7109 . . . . 5  |-  ( ~P A  ~~  ( A  +c  1o )  <->  E. f 
f : ~P A -1-1-onto-> ( A  +c  1o ) )
119, 10sylib 189 . . . 4  |-  ( ( A  +c  1o ) 
~~  ~P A  ->  E. f 
f : ~P A -1-1-onto-> ( A  +c  1o ) )
12 f1of 5666 . . . . . . . . . 10  |-  ( f : ~P A -1-1-onto-> ( A  +c  1o )  -> 
f : ~P A --> ( A  +c  1o ) )
13 relsdom 7108 . . . . . . . . . . . 12  |-  Rel  ~<
1413brrelex2i 4911 . . . . . . . . . . 11  |-  ( 1o 
~<  A  ->  A  e. 
_V )
15 pwidg 3803 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  A  e.  ~P A )
1614, 15syl 16 . . . . . . . . . 10  |-  ( 1o 
~<  A  ->  A  e. 
~P A )
17 ffvelrn 5860 . . . . . . . . . 10  |-  ( ( f : ~P A --> ( A  +c  1o )  /\  A  e.  ~P A )  ->  (
f `  A )  e.  ( A  +c  1o ) )
1812, 16, 17syl2anr 465 . . . . . . . . 9  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  ( f `  A )  e.  ( A  +c  1o ) )
19 cda1dif 8048 . . . . . . . . 9  |-  ( ( f `  A )  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { ( f `
 A ) } )  ~~  A )
2018, 19syl 16 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  ( ( A  +c  1o )  \  { ( f `  A ) } ) 
~~  A )
21 bren 7109 . . . . . . . 8  |-  ( ( ( A  +c  1o )  \  { ( f `
 A ) } )  ~~  A  <->  E. g 
g : ( ( A  +c  1o ) 
\  { ( f `
 A ) } ) -1-1-onto-> A )
2220, 21sylib 189 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  E. g  g : ( ( A  +c  1o )  \  { ( f `  A ) } ) -1-1-onto-> A )
23 simpll 731 . . . . . . . . 9  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  1o  ~<  A )
24 simplr 732 . . . . . . . . 9  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  f : ~P A -1-1-onto-> ( A  +c  1o ) )
25 simpr 448 . . . . . . . . 9  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  g : ( ( A  +c  1o )  \  { ( f `  A ) } ) -1-1-onto-> A )
26 eqeq1 2441 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w  =  A  <->  x  =  A ) )
27 id 20 . . . . . . . . . . . 12  |-  ( w  =  x  ->  w  =  x )
2826, 27ifbieq2d 3751 . . . . . . . . . . 11  |-  ( w  =  x  ->  if ( w  =  A ,  (/) ,  w )  =  if ( x  =  A ,  (/) ,  x ) )
2928cbvmptv 4292 . . . . . . . . . 10  |-  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) )  =  ( x  e.  ~P A  |->  if ( x  =  A ,  (/) ,  x ) )
3029coeq2i 5025 . . . . . . . . 9  |-  ( ( g  o.  f )  o.  ( w  e. 
~P A  |->  if ( w  =  A ,  (/)
,  w ) ) )  =  ( ( g  o.  f )  o.  ( x  e. 
~P A  |->  if ( x  =  A ,  (/)
,  x ) ) )
31 eqid 2435 . . . . . . . . . 10  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' s " {
z } ) )  =  z ) ) }  =  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' s " {
z } ) )  =  z ) ) }
3231fpwwecbv 8511 . . . . . . . . 9  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' s " {
z } ) )  =  z ) ) }  =  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( (
( g  o.  f
)  o.  ( w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w ) ) ) `  ( `' r " {
y } ) )  =  y ) ) }
33 eqid 2435 . . . . . . . . 9  |-  U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( ( ( g  o.  f )  o.  (
w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w
) ) ) `  ( `' s " {
z } ) )  =  z ) ) }  =  U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( ( ( g  o.  f )  o.  (
w  e.  ~P A  |->  if ( w  =  A ,  (/) ,  w
) ) ) `  ( `' s " {
z } ) )  =  z ) ) }
3423, 24, 25, 30, 32, 33canthp1lem2 8520 . . . . . . . 8  |-  -.  (
( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )
3534pm2.21i 125 . . . . . . 7  |-  ( ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  /\  g : ( ( A  +c  1o )  \  { ( f `
 A ) } ) -1-1-onto-> A )  ->  F.  )
3622, 35exlimddv 1648 . . . . . 6  |-  ( ( 1o  ~<  A  /\  f : ~P A -1-1-onto-> ( A  +c  1o ) )  ->  F.  )
3736ex 424 . . . . 5  |-  ( 1o 
~<  A  ->  ( f : ~P A -1-1-onto-> ( A  +c  1o )  ->  F.  ) )
3837exlimdv 1646 . . . 4  |-  ( 1o 
~<  A  ->  ( E. f  f : ~P A
-1-1-onto-> ( A  +c  1o )  ->  F.  ) )
3911, 38syl5 30 . . 3  |-  ( 1o 
~<  A  ->  ( ( A  +c  1o ) 
~~  ~P A  ->  F.  ) )
408, 39mtoi 171 . 2  |-  ( 1o 
~<  A  ->  -.  ( A  +c  1o )  ~~  ~P A )
41 brsdom 7122 . 2  |-  ( ( A  +c  1o ) 
~<  ~P A  <->  ( ( A  +c  1o )  ~<_  ~P A  /\  -.  ( A  +c  1o )  ~~  ~P A ) )
427, 40, 41sylanbrc 646 1  |-  ( 1o 
~<  A  ->  ( A  +c  1o )  ~<  ~P A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    F. wfal 1326   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    \ cdif 3309    C_ wss 3312   (/)c0 3620   ifcif 3731   ~Pcpw 3791   {csn 3806   U.cuni 4007   class class class wbr 4204   {copab 4257    e. cmpt 4258    We wwe 4532    X. cxp 4868   `'ccnv 4869   dom cdm 4870   "cima 4873    o. ccom 4874   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   1oc1o 6709   2oc2o 6710    ~~ cen 7098    ~<_ cdom 7099    ~< csdm 7100    +c ccda 8039
This theorem is referenced by:  finngch  8522  gchcda1  8523
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-card 7818  df-cda 8040
  Copyright terms: Public domain W3C validator