MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1lem1 Structured version   Unicode version

Theorem canthp1lem1 8519
Description: Lemma for canthp1 8521. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1lem1  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ~P A )

Proof of Theorem canthp1lem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1sdom2 7299 . . 3  |-  1o  ~<  2o
2 cdaxpdom 8061 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  2o )  -> 
( A  +c  2o )  ~<_  ( A  X.  2o ) )
31, 2mpan2 653 . 2  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ( A  X.  2o ) )
4 sdom0 7231 . . . . . 6  |-  -.  1o  ~< 
(/)
5 breq2 4208 . . . . . 6  |-  ( A  =  (/)  ->  ( 1o 
~<  A  <->  1o  ~<  (/) ) )
64, 5mtbiri 295 . . . . 5  |-  ( A  =  (/)  ->  -.  1o  ~<  A )
76con2i 114 . . . 4  |-  ( 1o 
~<  A  ->  -.  A  =  (/) )
8 neq0 3630 . . . 4  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
97, 8sylib 189 . . 3  |-  ( 1o 
~<  A  ->  E. x  x  e.  A )
10 relsdom 7108 . . . . . . . . . 10  |-  Rel  ~<
1110brrelex2i 4911 . . . . . . . . 9  |-  ( 1o 
~<  A  ->  A  e. 
_V )
1211adantr 452 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  A  e.  _V )
13 enrefg 7131 . . . . . . . 8  |-  ( A  e.  _V  ->  A  ~~  A )
1412, 13syl 16 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  A  ~~  A )
15 df2o2 6730 . . . . . . . . 9  |-  2o  =  { (/) ,  { (/) } }
16 pwpw0 3938 . . . . . . . . 9  |-  ~P { (/)
}  =  { (/) ,  { (/) } }
1715, 16eqtr4i 2458 . . . . . . . 8  |-  2o  =  ~P { (/) }
18 0ex 4331 . . . . . . . . . 10  |-  (/)  e.  _V
19 vex 2951 . . . . . . . . . 10  |-  x  e. 
_V
20 en2sn 7178 . . . . . . . . . 10  |-  ( (
(/)  e.  _V  /\  x  e.  _V )  ->  { (/) } 
~~  { x }
)
2118, 19, 20mp2an 654 . . . . . . . . 9  |-  { (/) } 
~~  { x }
22 pwen 7272 . . . . . . . . 9  |-  ( {
(/) }  ~~  { x }  ->  ~P { (/) } 
~~  ~P { x }
)
2321, 22ax-mp 8 . . . . . . . 8  |-  ~P { (/)
}  ~~  ~P { x }
2417, 23eqbrtri 4223 . . . . . . 7  |-  2o  ~~  ~P { x }
25 xpen 7262 . . . . . . 7  |-  ( ( A  ~~  A  /\  2o  ~~  ~P { x } )  ->  ( A  X.  2o )  ~~  ( A  X.  ~P {
x } ) )
2614, 24, 25sylancl 644 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~~  ( A  X.  ~P { x } ) )
27 snex 4397 . . . . . . . 8  |-  { x }  e.  _V
2827pwex 4374 . . . . . . 7  |-  ~P {
x }  e.  _V
29 uncom 3483 . . . . . . . . 9  |-  ( ( A  \  { x } )  u.  {
x } )  =  ( { x }  u.  ( A  \  {
x } ) )
30 simpr 448 . . . . . . . . . . 11  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  x  e.  A )
3130snssd 3935 . . . . . . . . . 10  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  { x }  C_  A )
32 undif 3700 . . . . . . . . . 10  |-  ( { x }  C_  A  <->  ( { x }  u.  ( A  \  { x } ) )  =  A )
3331, 32sylib 189 . . . . . . . . 9  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( { x }  u.  ( A  \  {
x } ) )  =  A )
3429, 33syl5eq 2479 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  u.  { x }
)  =  A )
35 difexg 4343 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  \  { x }
)  e.  _V )
3612, 35syl 16 . . . . . . . . 9  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  \  {
x } )  e. 
_V )
37 canth2g 7253 . . . . . . . . 9  |-  ( ( A  \  { x } )  e.  _V  ->  ( A  \  {
x } )  ~<  ~P ( A  \  {
x } ) )
38 domunsn 7249 . . . . . . . . 9  |-  ( ( A  \  { x } )  ~<  ~P ( A  \  { x }
)  ->  ( ( A  \  { x }
)  u.  { x } )  ~<_  ~P ( A  \  { x }
) )
3936, 37, 383syl 19 . . . . . . . 8  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  u.  { x }
)  ~<_  ~P ( A  \  { x } ) )
4034, 39eqbrtrrd 4226 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  A  ~<_  ~P ( A  \  { x } ) )
41 xpdom1g 7197 . . . . . . 7  |-  ( ( ~P { x }  e.  _V  /\  A  ~<_  ~P ( A  \  {
x } ) )  ->  ( A  X.  ~P { x } )  ~<_  ( ~P ( A 
\  { x }
)  X.  ~P {
x } ) )
4228, 40, 41sylancr 645 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  ~P { x } )  ~<_  ( ~P ( A 
\  { x }
)  X.  ~P {
x } ) )
43 endomtr 7157 . . . . . 6  |-  ( ( ( A  X.  2o )  ~~  ( A  X.  ~P { x } )  /\  ( A  X.  ~P { x } )  ~<_  ( ~P ( A 
\  { x }
)  X.  ~P {
x } ) )  ->  ( A  X.  2o )  ~<_  ( ~P ( A  \  { x } )  X.  ~P { x } ) )
4426, 42, 43syl2anc 643 . . . . 5  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~<_  ( ~P ( A  \  { x }
)  X.  ~P {
x } ) )
45 pwcdaen 8057 . . . . . . 7  |-  ( ( ( A  \  {
x } )  e. 
_V  /\  { x }  e.  _V )  ->  ~P ( ( A 
\  { x }
)  +c  { x } )  ~~  ( ~P ( A  \  {
x } )  X. 
~P { x }
) )
4636, 27, 45sylancl 644 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ~P ( ( A 
\  { x }
)  +c  { x } )  ~~  ( ~P ( A  \  {
x } )  X. 
~P { x }
) )
4746ensymd 7150 . . . . 5  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ~P ( A 
\  { x }
)  X.  ~P {
x } )  ~~  ~P ( ( A  \  { x } )  +c  { x }
) )
48 domentr 7158 . . . . 5  |-  ( ( ( A  X.  2o )  ~<_  ( ~P ( A  \  { x }
)  X.  ~P {
x } )  /\  ( ~P ( A  \  { x } )  X.  ~P { x } )  ~~  ~P ( ( A  \  { x } )  +c  { x }
) )  ->  ( A  X.  2o )  ~<_  ~P ( ( A  \  { x } )  +c  { x }
) )
4944, 47, 48syl2anc 643 . . . 4  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~<_  ~P ( ( A 
\  { x }
)  +c  { x } ) )
5027a1i 11 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  { x }  e.  _V )
51 incom 3525 . . . . . . . . 9  |-  ( ( A  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( A  \  {
x } ) )
52 disjdif 3692 . . . . . . . . 9  |-  ( { x }  i^i  ( A  \  { x }
) )  =  (/)
5351, 52eqtri 2455 . . . . . . . 8  |-  ( ( A  \  { x } )  i^i  {
x } )  =  (/)
5453a1i 11 . . . . . . 7  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  i^i  { x }
)  =  (/) )
55 cdaun 8044 . . . . . . 7  |-  ( ( ( A  \  {
x } )  e. 
_V  /\  { x }  e.  _V  /\  (
( A  \  {
x } )  i^i 
{ x } )  =  (/) )  ->  (
( A  \  {
x } )  +c 
{ x } ) 
~~  ( ( A 
\  { x }
)  u.  { x } ) )
5636, 50, 54, 55syl3anc 1184 . . . . . 6  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  +c  { x }
)  ~~  ( ( A  \  { x }
)  u.  { x } ) )
5756, 34breqtrd 4228 . . . . 5  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( ( A  \  { x } )  +c  { x }
)  ~~  A )
58 pwen 7272 . . . . 5  |-  ( ( ( A  \  {
x } )  +c 
{ x } ) 
~~  A  ->  ~P ( ( A  \  { x } )  +c  { x }
)  ~~  ~P A
)
5957, 58syl 16 . . . 4  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ~P ( ( A 
\  { x }
)  +c  { x } )  ~~  ~P A )
60 domentr 7158 . . . 4  |-  ( ( ( A  X.  2o )  ~<_  ~P ( ( A 
\  { x }
)  +c  { x } )  /\  ~P ( ( A  \  { x } )  +c  { x }
)  ~~  ~P A
)  ->  ( A  X.  2o )  ~<_  ~P A
)
6149, 59, 60syl2anc 643 . . 3  |-  ( ( 1o  ~<  A  /\  x  e.  A )  ->  ( A  X.  2o )  ~<_  ~P A )
629, 61exlimddv 1648 . 2  |-  ( 1o 
~<  A  ->  ( A  X.  2o )  ~<_  ~P A )
63 domtr 7152 . 2  |-  ( ( ( A  +c  2o )  ~<_  ( A  X.  2o )  /\  ( A  X.  2o )  ~<_  ~P A )  ->  ( A  +c  2o )  ~<_  ~P A )
643, 62, 63syl2anc 643 1  |-  ( 1o 
~<  A  ->  ( A  +c  2o )  ~<_  ~P A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   {cpr 3807   class class class wbr 4204    X. cxp 4868  (class class class)co 6073   1oc1o 6709   2oc2o 6710    ~~ cen 7098    ~<_ cdom 7099    ~< csdm 7100    +c ccda 8039
This theorem is referenced by:  canthp1lem2  8520  canthp1  8521
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-1o 6716  df-2o 6717  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-cda 8040
  Copyright terms: Public domain W3C validator