MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem1 Unicode version

Theorem cantnfp1lem1 7382
Description: Lemma for cantnfp1 7385. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
cantnfp1.4  |-  ( ph  ->  G  e.  S )
cantnfp1.5  |-  ( ph  ->  X  e.  B )
cantnfp1.6  |-  ( ph  ->  Y  e.  A )
cantnfp1.7  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  C_  X
)
cantnfp1.f  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
Assertion
Ref Expression
cantnfp1lem1  |-  ( ph  ->  F  e.  S )
Distinct variable groups:    t, B    t, A    t, S    t, G    ph, t    t, Y   
t, X
Allowed substitution hint:    F( t)

Proof of Theorem cantnfp1lem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 cantnfp1.6 . . . . 5  |-  ( ph  ->  Y  e.  A )
21adantr 451 . . . 4  |-  ( (
ph  /\  t  e.  B )  ->  Y  e.  A )
3 cantnfp1.4 . . . . . . 7  |-  ( ph  ->  G  e.  S )
4 cantnfs.1 . . . . . . . 8  |-  S  =  dom  ( A CNF  B
)
5 cantnfs.2 . . . . . . . 8  |-  ( ph  ->  A  e.  On )
6 cantnfs.3 . . . . . . . 8  |-  ( ph  ->  B  e.  On )
74, 5, 6cantnfs 7369 . . . . . . 7  |-  ( ph  ->  ( G  e.  S  <->  ( G : B --> A  /\  ( `' G " ( _V 
\  1o ) )  e.  Fin ) ) )
83, 7mpbid 201 . . . . . 6  |-  ( ph  ->  ( G : B --> A  /\  ( `' G " ( _V  \  1o ) )  e.  Fin ) )
98simpld 445 . . . . 5  |-  ( ph  ->  G : B --> A )
10 ffvelrn 5665 . . . . 5  |-  ( ( G : B --> A  /\  t  e.  B )  ->  ( G `  t
)  e.  A )
119, 10sylan 457 . . . 4  |-  ( (
ph  /\  t  e.  B )  ->  ( G `  t )  e.  A )
12 ifcl 3603 . . . 4  |-  ( ( Y  e.  A  /\  ( G `  t )  e.  A )  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  e.  A )
132, 11, 12syl2anc 642 . . 3  |-  ( (
ph  /\  t  e.  B )  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  e.  A )
14 cantnfp1.f . . 3  |-  F  =  ( t  e.  B  |->  if ( t  =  X ,  Y , 
( G `  t
) ) )
1513, 14fmptd 5686 . 2  |-  ( ph  ->  F : B --> A )
168simprd 449 . . . 4  |-  ( ph  ->  ( `' G "
( _V  \  1o ) )  e.  Fin )
17 snfi 6943 . . . 4  |-  { X }  e.  Fin
18 unfi 7126 . . . 4  |-  ( ( ( `' G "
( _V  \  1o ) )  e.  Fin  /\ 
{ X }  e.  Fin )  ->  ( ( `' G " ( _V 
\  1o ) )  u.  { X }
)  e.  Fin )
1916, 17, 18sylancl 643 . . 3  |-  ( ph  ->  ( ( `' G " ( _V  \  1o ) )  u.  { X } )  e.  Fin )
20 df1o2 6493 . . . . . 6  |-  1o  =  { (/) }
2120difeq2i 3293 . . . . 5  |-  ( _V 
\  1o )  =  ( _V  \  { (/)
} )
2221imaeq2i 5012 . . . 4  |-  ( `' F " ( _V 
\  1o ) )  =  ( `' F " ( _V  \  { (/)
} ) )
23 eldifi 3300 . . . . . . . 8  |-  ( k  e.  ( B  \ 
( ( `' G " ( _V  \  1o ) )  u.  { X } ) )  -> 
k  e.  B )
2423adantl 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  k  e.  B
)
251adantr 451 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  Y  e.  A
)
26 fvex 5541 . . . . . . . 8  |-  ( G `
 k )  e. 
_V
27 ifexg 3626 . . . . . . . 8  |-  ( ( Y  e.  A  /\  ( G `  k )  e.  _V )  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  e.  _V )
2825, 26, 27sylancl 643 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  e. 
_V )
29 eqeq1 2291 . . . . . . . . 9  |-  ( t  =  k  ->  (
t  =  X  <->  k  =  X ) )
30 fveq2 5527 . . . . . . . . 9  |-  ( t  =  k  ->  ( G `  t )  =  ( G `  k ) )
3129, 30ifbieq2d 3587 . . . . . . . 8  |-  ( t  =  k  ->  if ( t  =  X ,  Y ,  ( G `  t ) )  =  if ( k  =  X ,  Y ,  ( G `  k ) ) )
3231, 14fvmptg 5602 . . . . . . 7  |-  ( ( k  e.  B  /\  if ( k  =  X ,  Y ,  ( G `  k ) )  e.  _V )  ->  ( F `  k
)  =  if ( k  =  X ,  Y ,  ( G `  k ) ) )
3324, 28, 32syl2anc 642 . . . . . 6  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  ( F `  k )  =  if ( k  =  X ,  Y ,  ( G `  k ) ) )
34 eldifn 3301 . . . . . . . . 9  |-  ( k  e.  ( B  \ 
( ( `' G " ( _V  \  1o ) )  u.  { X } ) )  ->  -.  k  e.  (
( `' G "
( _V  \  1o ) )  u.  { X } ) )
3534adantl 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  -.  k  e.  ( ( `' G " ( _V  \  1o ) )  u.  { X } ) )
36 elsn 3657 . . . . . . . . 9  |-  ( k  e.  { X }  <->  k  =  X )
37 elun2 3345 . . . . . . . . 9  |-  ( k  e.  { X }  ->  k  e.  ( ( `' G " ( _V 
\  1o ) )  u.  { X }
) )
3836, 37sylbir 204 . . . . . . . 8  |-  ( k  =  X  ->  k  e.  ( ( `' G " ( _V  \  1o ) )  u.  { X } ) )
3935, 38nsyl 113 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  -.  k  =  X )
40 iffalse 3574 . . . . . . 7  |-  ( -.  k  =  X  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  =  ( G `
 k ) )
4139, 40syl 15 . . . . . 6  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  if ( k  =  X ,  Y ,  ( G `  k ) )  =  ( G `  k
) )
42 ssun1 3340 . . . . . . . . 9  |-  ( `' G " ( _V 
\  1o ) ) 
C_  ( ( `' G " ( _V 
\  1o ) )  u.  { X }
)
43 sscon 3312 . . . . . . . . 9  |-  ( ( `' G " ( _V 
\  1o ) ) 
C_  ( ( `' G " ( _V 
\  1o ) )  u.  { X }
)  ->  ( B  \  ( ( `' G " ( _V  \  1o ) )  u.  { X } ) )  C_  ( B  \  ( `' G " ( _V 
\  1o ) ) ) )
4442, 43ax-mp 8 . . . . . . . 8  |-  ( B 
\  ( ( `' G " ( _V 
\  1o ) )  u.  { X }
) )  C_  ( B  \  ( `' G " ( _V  \  1o ) ) )
4544sseli 3178 . . . . . . 7  |-  ( k  e.  ( B  \ 
( ( `' G " ( _V  \  1o ) )  u.  { X } ) )  -> 
k  e.  ( B 
\  ( `' G " ( _V  \  1o ) ) ) )
4621imaeq2i 5012 . . . . . . . . 9  |-  ( `' G " ( _V 
\  1o ) )  =  ( `' G " ( _V  \  { (/)
} ) )
47 eqimss2 3233 . . . . . . . . 9  |-  ( ( `' G " ( _V 
\  1o ) )  =  ( `' G " ( _V  \  { (/)
} ) )  -> 
( `' G "
( _V  \  { (/)
} ) )  C_  ( `' G " ( _V 
\  1o ) ) )
4846, 47mp1i 11 . . . . . . . 8  |-  ( ph  ->  ( `' G "
( _V  \  { (/)
} ) )  C_  ( `' G " ( _V 
\  1o ) ) )
499, 48suppssr 5661 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( B  \  ( `' G " ( _V 
\  1o ) ) ) )  ->  ( G `  k )  =  (/) )
5045, 49sylan2 460 . . . . . 6  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  ( G `  k )  =  (/) )
5133, 41, 503eqtrd 2321 . . . . 5  |-  ( (
ph  /\  k  e.  ( B  \  (
( `' G "
( _V  \  1o ) )  u.  { X } ) ) )  ->  ( F `  k )  =  (/) )
5215, 51suppss 5660 . . . 4  |-  ( ph  ->  ( `' F "
( _V  \  { (/)
} ) )  C_  ( ( `' G " ( _V  \  1o ) )  u.  { X } ) )
5322, 52syl5eqss 3224 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  C_  (
( `' G "
( _V  \  1o ) )  u.  { X } ) )
54 ssfi 7085 . . 3  |-  ( ( ( ( `' G " ( _V  \  1o ) )  u.  { X } )  e.  Fin  /\  ( `' F "
( _V  \  1o ) )  C_  (
( `' G "
( _V  \  1o ) )  u.  { X } ) )  -> 
( `' F "
( _V  \  1o ) )  e.  Fin )
5519, 53, 54syl2anc 642 . 2  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  e.  Fin )
564, 5, 6cantnfs 7369 . 2  |-  ( ph  ->  ( F  e.  S  <->  ( F : B --> A  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
5715, 55, 56mpbir2and 888 1  |-  ( ph  ->  F  e.  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790    \ cdif 3151    u. cun 3152    C_ wss 3154   (/)c0 3457   ifcif 3567   {csn 3642    e. cmpt 4079   Oncon0 4394   `'ccnv 4690   dom cdm 4691   "cima 4694   -->wf 5253   ` cfv 5257  (class class class)co 5860   1oc1o 6474   Fincfn 6865   CNF ccnf 7364
This theorem is referenced by:  cantnfp1lem2  7383  cantnfp1lem3  7384  cantnfp1  7385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-recs 6390  df-rdg 6425  df-seqom 6462  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-fin 6869  df-oi 7227  df-cnf 7365
  Copyright terms: Public domain W3C validator