MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardalephex Unicode version

Theorem cardalephex 7712
Description: Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.)
Assertion
Ref Expression
cardalephex  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
Distinct variable group:    x, A
Dummy variable  y is distinct from all other variables.

Proof of Theorem cardalephex
StepHypRef Expression
1 simpl 445 . . . . 5  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  om  C_  A
)
2 cardaleph 7711 . . . . . . 7  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  =  ( aleph `  |^| { y  e.  On  |  A  C_  ( aleph `  y
) } ) )
32sseq2d 3207 . . . . . 6  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  ( om  C_  A  <->  om  C_  ( aleph `  |^| { y  e.  On  |  A  C_  ( aleph `  y ) } ) ) )
4 alephgeom 7704 . . . . . 6  |-  ( |^| { y  e.  On  |  A  C_  ( aleph `  y
) }  e.  On  <->  om  C_  ( aleph `  |^| { y  e.  On  |  A  C_  ( aleph `  y ) } ) )
53, 4syl6bbr 256 . . . . 5  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  ( om  C_  A  <->  |^| { y  e.  On  |  A  C_  ( aleph `  y ) }  e.  On )
)
61, 5mpbid 203 . . . 4  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  |^| { y  e.  On  |  A  C_  ( aleph `  y ) }  e.  On )
7 fveq2 5485 . . . . . 6  |-  ( x  =  |^| { y  e.  On  |  A  C_  ( aleph `  y ) }  ->  ( aleph `  x
)  =  ( aleph ` 
|^| { y  e.  On  |  A  C_  ( aleph `  y ) } ) )
87eqeq2d 2295 . . . . 5  |-  ( x  =  |^| { y  e.  On  |  A  C_  ( aleph `  y ) }  ->  ( A  =  ( aleph `  x )  <->  A  =  ( aleph `  |^| { y  e.  On  |  A  C_  ( aleph `  y
) } ) ) )
98rspcev 2885 . . . 4  |-  ( (
|^| { y  e.  On  |  A  C_  ( aleph `  y ) }  e.  On  /\  A  =  (
aleph `  |^| { y  e.  On  |  A  C_  ( aleph `  y ) } ) )  ->  E. x  e.  On  A  =  ( aleph `  x ) )
106, 2, 9syl2anc 644 . . 3  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  E. x  e.  On  A  =  (
aleph `  x ) )
1110ex 425 . 2  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  ->  E. x  e.  On  A  =  (
aleph `  x ) ) )
12 alephcard 7692 . . . 4  |-  ( card `  ( aleph `  x )
)  =  ( aleph `  x )
13 fveq2 5485 . . . 4  |-  ( A  =  ( aleph `  x
)  ->  ( card `  A )  =  (
card `  ( aleph `  x
) ) )
14 id 21 . . . 4  |-  ( A  =  ( aleph `  x
)  ->  A  =  ( aleph `  x )
)
1512, 13, 143eqtr4a 2342 . . 3  |-  ( A  =  ( aleph `  x
)  ->  ( card `  A )  =  A )
1615rexlimivw 2664 . 2  |-  ( E. x  e.  On  A  =  ( aleph `  x
)  ->  ( card `  A )  =  A )
1711, 16impbid1 196 1  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   E.wrex 2545   {crab 2548    C_ wss 3153   |^|cint 3863   Oncon0 4391   omcom 4655   ` cfv 5221   cardccrd 7563   alephcale 7564
This theorem is referenced by:  infenaleph  7713  isinfcard  7714  alephfp  7730  alephval3  7732  dfac12k  7768  alephval2  8189  winalim2  8313
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-oi 7220  df-har 7267  df-card 7567  df-aleph 7568
  Copyright terms: Public domain W3C validator