MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardcf Unicode version

Theorem cardcf 8096
Description: Cofinality is a cardinal number. Proposition 11.11 of [TakeutiZaring] p. 103. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cardcf  |-  ( card `  ( cf `  A
) )  =  ( cf `  A )

Proof of Theorem cardcf
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 8091 . . . 4  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
2 vex 2927 . . . . . . . . 9  |-  v  e. 
_V
3 eqeq1 2418 . . . . . . . . . . 11  |-  ( x  =  v  ->  (
x  =  ( card `  y )  <->  v  =  ( card `  y )
) )
43anbi1d 686 . . . . . . . . . 10  |-  ( x  =  v  ->  (
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)  <->  ( v  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) ) )
54exbidv 1633 . . . . . . . . 9  |-  ( x  =  v  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  E. y
( v  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) ) )
62, 5elab 3050 . . . . . . . 8  |-  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  <->  E. y ( v  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
7 fveq2 5695 . . . . . . . . . . . 12  |-  ( v  =  ( card `  y
)  ->  ( card `  v )  =  (
card `  ( card `  y ) ) )
8 cardidm 7810 . . . . . . . . . . . 12  |-  ( card `  ( card `  y
) )  =  (
card `  y )
97, 8syl6eq 2460 . . . . . . . . . . 11  |-  ( v  =  ( card `  y
)  ->  ( card `  v )  =  (
card `  y )
)
10 eqeq2 2421 . . . . . . . . . . 11  |-  ( v  =  ( card `  y
)  ->  ( ( card `  v )  =  v  <->  ( card `  v
)  =  ( card `  y ) ) )
119, 10mpbird 224 . . . . . . . . . 10  |-  ( v  =  ( card `  y
)  ->  ( card `  v )  =  v )
1211adantr 452 . . . . . . . . 9  |-  ( ( v  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  -> 
( card `  v )  =  v )
1312exlimiv 1641 . . . . . . . 8  |-  ( E. y ( v  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  -> 
( card `  v )  =  v )
146, 13sylbi 188 . . . . . . 7  |-  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  ( card `  v
)  =  v )
15 cardon 7795 . . . . . . 7  |-  ( card `  v )  e.  On
1614, 15syl6eqelr 2501 . . . . . 6  |-  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  v  e.  On )
1716ssriv 3320 . . . . 5  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  On
18 fvex 5709 . . . . . . 7  |-  ( cf `  A )  e.  _V
191, 18syl6eqelr 2501 . . . . . 6  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )
20 intex 4324 . . . . . 6  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) }  =/=  (/)  <->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )
2119, 20sylibr 204 . . . . 5  |-  ( A  e.  On  ->  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  =/=  (/) )
22 onint 4742 . . . . 5  |-  ( ( { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  On  /\  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  =/=  (/) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
2317, 21, 22sylancr 645 . . . 4  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
241, 23eqeltrd 2486 . . 3  |-  ( A  e.  On  ->  ( cf `  A )  e. 
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
25 fveq2 5695 . . . . 5  |-  ( v  =  ( cf `  A
)  ->  ( card `  v )  =  (
card `  ( cf `  A ) ) )
26 id 20 . . . . 5  |-  ( v  =  ( cf `  A
)  ->  v  =  ( cf `  A ) )
2725, 26eqeq12d 2426 . . . 4  |-  ( v  =  ( cf `  A
)  ->  ( ( card `  v )  =  v  <->  ( card `  ( cf `  A ) )  =  ( cf `  A
) ) )
2827, 14vtoclga 2985 . . 3  |-  ( ( cf `  A )  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  ( card `  ( cf `  A ) )  =  ( cf `  A
) )
2924, 28syl 16 . 2  |-  ( A  e.  On  ->  ( card `  ( cf `  A
) )  =  ( cf `  A ) )
30 cff 8092 . . . . . 6  |-  cf : On
--> On
3130fdmi 5563 . . . . 5  |-  dom  cf  =  On
3231eleq2i 2476 . . . 4  |-  ( A  e.  dom  cf  <->  A  e.  On )
33 ndmfv 5722 . . . 4  |-  ( -.  A  e.  dom  cf  ->  ( cf `  A
)  =  (/) )
3432, 33sylnbir 299 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  A )  =  (/) )
35 card0 7809 . . . 4  |-  ( card `  (/) )  =  (/)
36 fveq2 5695 . . . 4  |-  ( ( cf `  A )  =  (/)  ->  ( card `  ( cf `  A
) )  =  (
card `  (/) ) )
37 id 20 . . . 4  |-  ( ( cf `  A )  =  (/)  ->  ( cf `  A )  =  (/) )
3835, 36, 373eqtr4a 2470 . . 3  |-  ( ( cf `  A )  =  (/)  ->  ( card `  ( cf `  A
) )  =  ( cf `  A ) )
3934, 38syl 16 . 2  |-  ( -.  A  e.  On  ->  (
card `  ( cf `  A ) )  =  ( cf `  A
) )
4029, 39pm2.61i 158 1  |-  ( card `  ( cf `  A
) )  =  ( cf `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2398    =/= wne 2575   A.wral 2674   E.wrex 2675   _Vcvv 2924    C_ wss 3288   (/)c0 3596   |^|cint 4018   Oncon0 4549   dom cdm 4845   ` cfv 5421   cardccrd 7786   cfccf 7788
This theorem is referenced by:  cfon  8099  winacard  8531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-er 6872  df-en 7077  df-card 7790  df-cf 7792
  Copyright terms: Public domain W3C validator