MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardid2 Structured version   Unicode version

Theorem cardid2 7832
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.)
Assertion
Ref Expression
cardid2  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )

Proof of Theorem cardid2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cardval3 7831 . . 3  |-  ( A  e.  dom  card  ->  (
card `  A )  =  |^| { y  e.  On  |  y  ~~  A } )
2 ssrab2 3420 . . . 4  |-  { y  e.  On  |  y 
~~  A }  C_  On
3 fvex 5734 . . . . . 6  |-  ( card `  A )  e.  _V
41, 3syl6eqelr 2524 . . . . 5  |-  ( A  e.  dom  card  ->  |^|
{ y  e.  On  |  y  ~~  A }  e.  _V )
5 intex 4348 . . . . 5  |-  ( { y  e.  On  | 
y  ~~  A }  =/=  (/)  <->  |^| { y  e.  On  |  y  ~~  A }  e.  _V )
64, 5sylibr 204 . . . 4  |-  ( A  e.  dom  card  ->  { y  e.  On  | 
y  ~~  A }  =/=  (/) )
7 onint 4767 . . . 4  |-  ( ( { y  e.  On  |  y  ~~  A }  C_  On  /\  { y  e.  On  |  y 
~~  A }  =/=  (/) )  ->  |^| { y  e.  On  |  y 
~~  A }  e.  { y  e.  On  | 
y  ~~  A }
)
82, 6, 7sylancr 645 . . 3  |-  ( A  e.  dom  card  ->  |^|
{ y  e.  On  |  y  ~~  A }  e.  { y  e.  On  |  y  ~~  A }
)
91, 8eqeltrd 2509 . 2  |-  ( A  e.  dom  card  ->  (
card `  A )  e.  { y  e.  On  |  y  ~~  A }
)
10 breq1 4207 . . . 4  |-  ( y  =  ( card `  A
)  ->  ( y  ~~  A  <->  ( card `  A
)  ~~  A )
)
1110elrab 3084 . . 3  |-  ( (
card `  A )  e.  { y  e.  On  |  y  ~~  A }  <->  ( ( card `  A
)  e.  On  /\  ( card `  A )  ~~  A ) )
1211simprbi 451 . 2  |-  ( (
card `  A )  e.  { y  e.  On  |  y  ~~  A }  ->  ( card `  A
)  ~~  A )
139, 12syl 16 1  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725    =/= wne 2598   {crab 2701   _Vcvv 2948    C_ wss 3312   (/)c0 3620   |^|cint 4042   class class class wbr 4204   Oncon0 4573   dom cdm 4870   ` cfv 5446    ~~ cen 7098   cardccrd 7814
This theorem is referenced by:  isnum3  7833  oncardid  7835  cardidm  7838  ficardom  7840  ficardid  7841  cardnn  7842  cardnueq0  7843  carden2a  7845  carden2b  7846  carddomi2  7849  sdomsdomcardi  7850  cardsdomelir  7852  cardsdomel  7853  infxpidm2  7890  dfac8b  7904  numdom  7911  alephnbtwn2  7945  alephsucdom  7952  infenaleph  7964  dfac12r  8018  cardacda  8070  pwsdompw  8076  cff1  8130  cfflb  8131  cflim2  8135  cfss  8137  cfslb  8138  domtriomlem  8314  cardid  8414  cardidg  8415  carden  8418  sdomsdomcard  8427  hargch  8544  gch2  8546  hashkf  11612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-en 7102  df-card 7818
  Copyright terms: Public domain W3C validator