MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Unicode version

Theorem cardinfima 7692
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 2771 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 isinfcard 7687 . . . . . . . . . . . . 13  |-  ( ( om  C_  ( F `  x )  /\  ( card `  ( F `  x ) )  =  ( F `  x
) )  <->  ( F `  x )  e.  ran  aleph
)
32bicomi 195 . . . . . . . . . . . 12  |-  ( ( F `  x )  e.  ran  aleph  <->  ( om  C_  ( F `  x
)  /\  ( card `  ( F `  x
) )  =  ( F `  x ) ) )
43simplbi 448 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ran  aleph  ->  om  C_  ( F `  x )
)
5 ffn 5327 . . . . . . . . . . . 12  |-  ( F : A --> ( om  u.  ran  aleph )  ->  F  Fn  A )
6 fnfvelrn 5596 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  ran  F
)
76ex 425 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ran  F
) )
8 fnima 5300 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
98eleq2d 2325 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
( F `  x
)  e.  ( F
" A )  <->  ( F `  x )  e.  ran  F ) )
107, 9sylibrd 227 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ( F
" A ) ) )
11 elssuni 3829 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  ( F " A )  ->  ( F `  x )  C_ 
U. ( F " A ) )
1210, 11syl6 31 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  C_  U. ( F " A ) ) )
1312imp 420 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
145, 13sylan 459 . . . . . . . . . . 11  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
154, 14sylan9ssr 3168 . . . . . . . . . 10  |-  ( ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  /\  ( F `  x
)  e.  ran  aleph )  ->  om  C_  U. ( F
" A ) )
1615anasss 631 . . . . . . . . 9  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) )
1716a1i 12 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) ) )
18 carduniima 7691 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )
19 iscard3 7688 . . . . . . . . . 10  |-  ( (
card `  U. ( F
" A ) )  =  U. ( F
" A )  <->  U. ( F " A )  e.  ( om  u.  ran  aleph
) )
2018, 19syl6ibr 220 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
2120adantrd 456 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( card `  U. ( F " A ) )  =  U. ( F " A ) ) )
2217, 21jcad 521 . . . . . . 7  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) ) )
23 isinfcard 7687 . . . . . . 7  |-  ( ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) )  <->  U. ( F " A
)  e.  ran  aleph )
2422, 23syl6ib 219 . . . . . 6  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  U. ( F " A )  e.  ran  aleph
) )
2524exp4d 595 . . . . 5  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) ) ) )
2625imp 420 . . . 4  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e. 
ran  aleph ) ) )
2726rexlimdv 2641 . . 3  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( E. x  e.  A  ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) )
2827expimpd 589 . 2  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
291, 28syl 17 1  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2519   _Vcvv 2763    u. cun 3125    C_ wss 3127   U.cuni 3801   omcom 4628   ran crn 4662   "cima 4664    Fn wfn 4668   -->wf 4669   ` cfv 4673   cardccrd 7536   alephcale 7537
This theorem is referenced by:  alephfplem4  7702
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-oi 7193  df-har 7240  df-card 7540  df-aleph 7541
  Copyright terms: Public domain W3C validator