MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardlim Unicode version

Theorem cardlim 7848
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
cardlim  |-  ( om  C_  ( card `  A
)  <->  Lim  ( card `  A
) )

Proof of Theorem cardlim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3362 . . . . . . . . . . 11  |-  ( (
card `  A )  =  suc  x  ->  ( om  C_  ( card `  A
)  <->  om  C_  suc  x ) )
21biimpd 199 . . . . . . . . . 10  |-  ( (
card `  A )  =  suc  x  ->  ( om  C_  ( card `  A
)  ->  om  C_  suc  x ) )
3 limom 4851 . . . . . . . . . . . 12  |-  Lim  om
4 limsssuc 4821 . . . . . . . . . . . 12  |-  ( Lim 
om  ->  ( om  C_  x  <->  om  C_  suc  x ) )
53, 4ax-mp 8 . . . . . . . . . . 11  |-  ( om  C_  x  <->  om  C_  suc  x )
6 infensuc 7276 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  om  C_  x )  ->  x  ~~  suc  x )
76ex 424 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( om  C_  x  ->  x  ~~  suc  x ) )
85, 7syl5bir 210 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( om  C_  suc  x  ->  x  ~~  suc  x ) )
92, 8sylan9r 640 . . . . . . . . 9  |-  ( ( x  e.  On  /\  ( card `  A )  =  suc  x )  -> 
( om  C_  ( card `  A )  ->  x  ~~  suc  x ) )
10 breq2 4208 . . . . . . . . . 10  |-  ( (
card `  A )  =  suc  x  ->  (
x  ~~  ( card `  A )  <->  x  ~~  suc  x ) )
1110adantl 453 . . . . . . . . 9  |-  ( ( x  e.  On  /\  ( card `  A )  =  suc  x )  -> 
( x  ~~  ( card `  A )  <->  x  ~~  suc  x ) )
129, 11sylibrd 226 . . . . . . . 8  |-  ( ( x  e.  On  /\  ( card `  A )  =  suc  x )  -> 
( om  C_  ( card `  A )  ->  x  ~~  ( card `  A
) ) )
1312ex 424 . . . . . . 7  |-  ( x  e.  On  ->  (
( card `  A )  =  suc  x  ->  ( om  C_  ( card `  A
)  ->  x  ~~  ( card `  A )
) ) )
1413com3r 75 . . . . . 6  |-  ( om  C_  ( card `  A
)  ->  ( x  e.  On  ->  ( ( card `  A )  =  suc  x  ->  x  ~~  ( card `  A
) ) ) )
1514imp 419 . . . . 5  |-  ( ( om  C_  ( card `  A )  /\  x  e.  On )  ->  (
( card `  A )  =  suc  x  ->  x  ~~  ( card `  A
) ) )
16 vex 2951 . . . . . . . . . 10  |-  x  e. 
_V
1716sucid 4652 . . . . . . . . 9  |-  x  e. 
suc  x
18 eleq2 2496 . . . . . . . . 9  |-  ( (
card `  A )  =  suc  x  ->  (
x  e.  ( card `  A )  <->  x  e.  suc  x ) )
1917, 18mpbiri 225 . . . . . . . 8  |-  ( (
card `  A )  =  suc  x  ->  x  e.  ( card `  A
) )
20 cardidm 7835 . . . . . . . 8  |-  ( card `  ( card `  A
) )  =  (
card `  A )
2119, 20syl6eleqr 2526 . . . . . . 7  |-  ( (
card `  A )  =  suc  x  ->  x  e.  ( card `  ( card `  A ) ) )
22 cardne 7841 . . . . . . 7  |-  ( x  e.  ( card `  ( card `  A ) )  ->  -.  x  ~~  ( card `  A )
)
2321, 22syl 16 . . . . . 6  |-  ( (
card `  A )  =  suc  x  ->  -.  x  ~~  ( card `  A
) )
2423a1i 11 . . . . 5  |-  ( ( om  C_  ( card `  A )  /\  x  e.  On )  ->  (
( card `  A )  =  suc  x  ->  -.  x  ~~  ( card `  A
) ) )
2515, 24pm2.65d 168 . . . 4  |-  ( ( om  C_  ( card `  A )  /\  x  e.  On )  ->  -.  ( card `  A )  =  suc  x )
2625nrexdv 2801 . . 3  |-  ( om  C_  ( card `  A
)  ->  -.  E. x  e.  On  ( card `  A
)  =  suc  x
)
27 peano1 4855 . . . . . 6  |-  (/)  e.  om
28 ssel 3334 . . . . . 6  |-  ( om  C_  ( card `  A
)  ->  ( (/)  e.  om  -> 
(/)  e.  ( card `  A ) ) )
2927, 28mpi 17 . . . . 5  |-  ( om  C_  ( card `  A
)  ->  (/)  e.  (
card `  A )
)
30 n0i 3625 . . . . 5  |-  ( (/)  e.  ( card `  A
)  ->  -.  ( card `  A )  =  (/) )
31 cardon 7820 . . . . . . . . 9  |-  ( card `  A )  e.  On
3231onordi 4677 . . . . . . . 8  |-  Ord  ( card `  A )
33 ordzsl 4816 . . . . . . . 8  |-  ( Ord  ( card `  A
)  <->  ( ( card `  A )  =  (/)  \/ 
E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3432, 33mpbi 200 . . . . . . 7  |-  ( (
card `  A )  =  (/)  \/  E. x  e.  On  ( card `  A
)  =  suc  x  \/  Lim  ( card `  A
) )
35 3orass 939 . . . . . . 7  |-  ( ( ( card `  A
)  =  (/)  \/  E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
)  <->  ( ( card `  A )  =  (/)  \/  ( E. x  e.  On  ( card `  A
)  =  suc  x  \/  Lim  ( card `  A
) ) ) )
3634, 35mpbi 200 . . . . . 6  |-  ( (
card `  A )  =  (/)  \/  ( E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3736ori 365 . . . . 5  |-  ( -.  ( card `  A
)  =  (/)  ->  ( E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3829, 30, 373syl 19 . . . 4  |-  ( om  C_  ( card `  A
)  ->  ( E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3938ord 367 . . 3  |-  ( om  C_  ( card `  A
)  ->  ( -.  E. x  e.  On  ( card `  A )  =  suc  x  ->  Lim  ( card `  A )
) )
4026, 39mpd 15 . 2  |-  ( om  C_  ( card `  A
)  ->  Lim  ( card `  A ) )
41 limomss 4841 . 2  |-  ( Lim  ( card `  A
)  ->  om  C_  ( card `  A ) )
4240, 41impbii 181 1  |-  ( om  C_  ( card `  A
)  <->  Lim  ( card `  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312   (/)c0 3620   class class class wbr 4204   Ord word 4572   Oncon0 4573   Lim wlim 4574   suc csuc 4575   omcom 4836   ` cfv 5445    ~~ cen 7097   cardccrd 7811
This theorem is referenced by:  infxpenlem  7884  alephislim  7953  cflim2  8132  winalim  8559  gruina  8682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-1o 6715  df-er 6896  df-en 7101  df-dom 7102  df-card 7815
  Copyright terms: Public domain W3C validator