MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardne Unicode version

Theorem cardne 7566
Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
cardne  |-  ( A  e.  ( card `  B
)  ->  -.  A  ~~  B )

Proof of Theorem cardne
StepHypRef Expression
1 elfvdm 5488 . 2  |-  ( A  e.  ( card `  B
)  ->  B  e.  dom  card )
2 cardon 7545 . . . . . . . . . 10  |-  ( card `  B )  e.  On
32oneli 4472 . . . . . . . . 9  |-  ( A  e.  ( card `  B
)  ->  A  e.  On )
4 breq1 4000 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  ~~  B  <->  A  ~~  B ) )
54onintss 4414 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A  ~~  B  ->  |^| { x  e.  On  |  x  ~~  B }  C_  A ) )
63, 5syl 17 . . . . . . . 8  |-  ( A  e.  ( card `  B
)  ->  ( A  ~~  B  ->  |^| { x  e.  On  |  x  ~~  B }  C_  A ) )
76adantl 454 . . . . . . 7  |-  ( ( B  e.  dom  card  /\  A  e.  ( card `  B ) )  -> 
( A  ~~  B  ->  |^| { x  e.  On  |  x  ~~  B }  C_  A ) )
8 cardval3 7553 . . . . . . . . 9  |-  ( B  e.  dom  card  ->  (
card `  B )  =  |^| { x  e.  On  |  x  ~~  B } )
98sseq1d 3180 . . . . . . . 8  |-  ( B  e.  dom  card  ->  ( ( card `  B
)  C_  A  <->  |^| { x  e.  On  |  x  ~~  B }  C_  A ) )
109adantr 453 . . . . . . 7  |-  ( ( B  e.  dom  card  /\  A  e.  ( card `  B ) )  -> 
( ( card `  B
)  C_  A  <->  |^| { x  e.  On  |  x  ~~  B }  C_  A ) )
117, 10sylibrd 227 . . . . . 6  |-  ( ( B  e.  dom  card  /\  A  e.  ( card `  B ) )  -> 
( A  ~~  B  ->  ( card `  B
)  C_  A )
)
12 ontri1 4398 . . . . . . . 8  |-  ( ( ( card `  B
)  e.  On  /\  A  e.  On )  ->  ( ( card `  B
)  C_  A  <->  -.  A  e.  ( card `  B
) ) )
132, 3, 12sylancr 647 . . . . . . 7  |-  ( A  e.  ( card `  B
)  ->  ( ( card `  B )  C_  A 
<->  -.  A  e.  (
card `  B )
) )
1413adantl 454 . . . . . 6  |-  ( ( B  e.  dom  card  /\  A  e.  ( card `  B ) )  -> 
( ( card `  B
)  C_  A  <->  -.  A  e.  ( card `  B
) ) )
1511, 14sylibd 207 . . . . 5  |-  ( ( B  e.  dom  card  /\  A  e.  ( card `  B ) )  -> 
( A  ~~  B  ->  -.  A  e.  (
card `  B )
) )
1615con2d 109 . . . 4  |-  ( ( B  e.  dom  card  /\  A  e.  ( card `  B ) )  -> 
( A  e.  (
card `  B )  ->  -.  A  ~~  B
) )
1716ex 425 . . 3  |-  ( B  e.  dom  card  ->  ( A  e.  ( card `  B )  ->  ( A  e.  ( card `  B )  ->  -.  A  ~~  B ) ) )
1817pm2.43d 46 . 2  |-  ( B  e.  dom  card  ->  ( A  e.  ( card `  B )  ->  -.  A  ~~  B ) )
191, 18mpcom 34 1  |-  ( A  e.  ( card `  B
)  ->  -.  A  ~~  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   {crab 2522    C_ wss 3127   |^|cint 3836   class class class wbr 3997   Oncon0 4364   dom cdm 4661   ` cfv 4673    ~~ cen 6828   cardccrd 7536
This theorem is referenced by:  carden2b  7568  cardlim  7573  cardsdomelir  7574
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-fv 4689  df-en 6832  df-card 7540
  Copyright terms: Public domain W3C validator