MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardonle Unicode version

Theorem cardonle 7585
Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
cardonle  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
Dummy variable  x is distinct from all other variables.

Proof of Theorem cardonle
StepHypRef Expression
1 oncardval 7583 . 2  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
2 enrefg 6888 . . 3  |-  ( A  e.  On  ->  A  ~~  A )
3 breq1 4027 . . . 4  |-  ( x  =  A  ->  (
x  ~~  A  <->  A  ~~  A ) )
43intminss 3889 . . 3  |-  ( ( A  e.  On  /\  A  ~~  A )  ->  |^| { x  e.  On  |  x  ~~  A }  C_  A )
52, 4mpdan 651 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  x  ~~  A }  C_  A )
61, 5eqsstrd 3213 1  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1685   {crab 2548    C_ wss 3153   |^|cint 3863   class class class wbr 4024   Oncon0 4391   ` cfv 5221    ~~ cen 6855   cardccrd 7563
This theorem is referenced by:  card0  7586  iscard  7603  iscard2  7604  carduni  7609  cardom  7614  alephinit  7717  cfle  7875  cfflb  7880  pwfseqlem5  8280
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-en 6859  df-card 7567
  Copyright terms: Public domain W3C validator