MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomel Unicode version

Theorem cardsdomel 7561
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
cardsdomel  |-  ( ( A  e.  On  /\  B  e.  dom  card )  ->  ( A  ~<  B  <->  A  e.  ( card `  B )
) )

Proof of Theorem cardsdomel
StepHypRef Expression
1 cardid2 7540 . . . . . . 7  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
2 ensym 6864 . . . . . . 7  |-  ( (
card `  B )  ~~  B  ->  B  ~~  ( card `  B )
)
31, 2syl 17 . . . . . 6  |-  ( B  e.  dom  card  ->  B 
~~  ( card `  B
) )
4 sdomentr 6949 . . . . . 6  |-  ( ( A  ~<  B  /\  B  ~~  ( card `  B
) )  ->  A  ~<  ( card `  B
) )
53, 4sylan2 462 . . . . 5  |-  ( ( A  ~<  B  /\  B  e.  dom  card )  ->  A  ~<  ( card `  B ) )
6 ssdomg 6861 . . . . . . . 8  |-  ( A  e.  On  ->  (
( card `  B )  C_  A  ->  ( card `  B )  ~<_  A ) )
7 cardon 7531 . . . . . . . . 9  |-  ( card `  B )  e.  On
8 domtriord 6961 . . . . . . . . 9  |-  ( ( ( card `  B
)  e.  On  /\  A  e.  On )  ->  ( ( card `  B
)  ~<_  A  <->  -.  A  ~<  ( card `  B
) ) )
97, 8mpan 654 . . . . . . . 8  |-  ( A  e.  On  ->  (
( card `  B )  ~<_  A 
<->  -.  A  ~<  ( card `  B ) ) )
106, 9sylibd 207 . . . . . . 7  |-  ( A  e.  On  ->  (
( card `  B )  C_  A  ->  -.  A  ~<  ( card `  B
) ) )
1110con2d 109 . . . . . 6  |-  ( A  e.  On  ->  ( A  ~<  ( card `  B
)  ->  -.  ( card `  B )  C_  A ) )
12 ontri1 4384 . . . . . . . 8  |-  ( ( ( card `  B
)  e.  On  /\  A  e.  On )  ->  ( ( card `  B
)  C_  A  <->  -.  A  e.  ( card `  B
) ) )
137, 12mpan 654 . . . . . . 7  |-  ( A  e.  On  ->  (
( card `  B )  C_  A  <->  -.  A  e.  ( card `  B )
) )
1413con2bid 321 . . . . . 6  |-  ( A  e.  On  ->  ( A  e.  ( card `  B )  <->  -.  ( card `  B )  C_  A ) )
1511, 14sylibrd 227 . . . . 5  |-  ( A  e.  On  ->  ( A  ~<  ( card `  B
)  ->  A  e.  ( card `  B )
) )
165, 15syl5 30 . . . 4  |-  ( A  e.  On  ->  (
( A  ~<  B  /\  B  e.  dom  card )  ->  A  e.  ( card `  B ) ) )
1716exp3acom23 1368 . . 3  |-  ( A  e.  On  ->  ( B  e.  dom  card  ->  ( A  ~<  B  ->  A  e.  ( card `  B
) ) ) )
1817imp 420 . 2  |-  ( ( A  e.  On  /\  B  e.  dom  card )  ->  ( A  ~<  B  ->  A  e.  ( card `  B ) ) )
19 cardsdomelir 7560 . 2  |-  ( A  e.  ( card `  B
)  ->  A  ~<  B )
2018, 19impbid1 196 1  |-  ( ( A  e.  On  /\  B  e.  dom  card )  ->  ( A  ~<  B  <->  A  e.  ( card `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621    C_ wss 3113   class class class wbr 3983   Oncon0 4350   dom cdm 4647   ` cfv 4659    ~~ cen 6814    ~<_ cdom 6815    ~< csdm 6816   cardccrd 7522
This theorem is referenced by:  iscard  7562  cardval2  7578  infxpenlem  7595  alephnbtwn  7652  alephnbtwn2  7653  alephord2  7657  alephsdom  7667  pwsdompw  7784  inaprc  8412
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-card 7526
  Copyright terms: Public domain W3C validator