MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomelir Unicode version

Theorem cardsdomelir 7539
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 7540 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
cardsdomelir  |-  ( A  e.  ( card `  B
)  ->  A  ~<  B )

Proof of Theorem cardsdomelir
StepHypRef Expression
1 cardon 7510 . . . 4  |-  ( card `  B )  e.  On
21onelssi 4438 . . . 4  |-  ( A  e.  ( card `  B
)  ->  A  C_  ( card `  B ) )
3 ssdomg 6840 . . . 4  |-  ( (
card `  B )  e.  On  ->  ( A  C_  ( card `  B
)  ->  A  ~<_  ( card `  B ) ) )
41, 2, 3mpsyl 61 . . 3  |-  ( A  e.  ( card `  B
)  ->  A  ~<_  ( card `  B ) )
5 elfvdm 5453 . . . 4  |-  ( A  e.  ( card `  B
)  ->  B  e.  dom  card )
6 cardid2 7519 . . . 4  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
75, 6syl 17 . . 3  |-  ( A  e.  ( card `  B
)  ->  ( card `  B )  ~~  B
)
8 domentr 6853 . . 3  |-  ( ( A  ~<_  ( card `  B
)  /\  ( card `  B )  ~~  B
)  ->  A  ~<_  B )
94, 7, 8syl2anc 645 . 2  |-  ( A  e.  ( card `  B
)  ->  A  ~<_  B )
10 cardne 7531 . 2  |-  ( A  e.  ( card `  B
)  ->  -.  A  ~~  B )
11 brsdom 6817 . 2  |-  ( A 
~<  B  <->  ( A  ~<_  B  /\  -.  A  ~~  B ) )
129, 10, 11sylanbrc 648 1  |-  ( A  e.  ( card `  B
)  ->  A  ~<  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    e. wcel 1621    C_ wss 3094   class class class wbr 3963   Oncon0 4329   dom cdm 4626   ` cfv 4638    ~~ cen 6793    ~<_ cdom 6794    ~< csdm 6795   cardccrd 7501
This theorem is referenced by:  cardsdomel  7540  pwsdompw  7763  alephval2  8127  pwcfsdom  8138  tskcard  8336
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-en 6797  df-dom 6798  df-sdom 6799  df-card 7505
  Copyright terms: Public domain W3C validator